- 1: (a) Let $X = \{1, 2\}$. Find every topology on X.
 - (b) Let $X = \{1, 2, 3\}$, let $\mathcal{R} = \{\emptyset, \{1\}, \{1, 2\}, X\}$ and let $\mathcal{S} = \{\emptyset, \{1\}, \{2, 3\}, X\}$. Find the largest topology on X which is contained in $\mathcal{R} \cap \mathcal{S}$ and find the smallest topology on X which contains $\mathcal{R} \cup \mathcal{S}$.
 - (c) Let $X = \{1, 2, 3, 4\}$ and let $\mathcal{T} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, X\}$. Given that \mathcal{T} is a topology on X, find the number of bases for \mathcal{T} .
- 2: Let X be a topological space, let \mathcal{B} be a basis for the topology on X, let $A \subseteq X$, and let $a \in X$. Prove each of the following using only definitions and proven results from the lecture notes.
 - (a) $a \in A^o$ if and only if there exists $B \in \mathcal{B}$ with $a \in B$ such that $B \subseteq A$.
 - (b) $a \in \overline{A}$ if and only if for every $B \in \mathcal{B}$ with $a \in B$ we have $B \cap A \neq \emptyset$.
 - (c) $a \in \partial A$ if and only if for every $B \in \mathcal{B}$ with $a \in B$ we have $B \cap A \neq \emptyset$ and $B \cap (X \setminus A) \neq \emptyset$.
- **3:** Let *X* be a topological space.
 - (a) Show that if $A, B \subseteq X$ then $\overline{A} \cup \overline{B} = \overline{A \cup B}$.
 - (b) Show that if $A_k \subseteq X$ for all $k \in K$ then $\bigcup_{k \in K} \overline{A_k} \subseteq \overline{\bigcup_{k \in K} A_k}$ and give an example of a topological space X and subsets $A_k \subseteq X$ for which the reverse inclusion does not hold.
 - (c) Show that if every 1-point subset of X is closed in X then for all $A \subseteq X$ we have $\overline{A}' = A'$.
- **4:** Let X be a topological space. When $(x_n)_{n\geq 1}$ is a sequence in X, for $a\in X$ we say that $(x_n)_{n\geq 1}$ converges **to** a in X, or that a is **a limit** of $(x_n)_{n\geq 1}$ in X, and we write $x_n\to a$ in X, when for every open set U in X with $a\in U$ there exists $m\in \mathbb{Z}^+$ such that $x_n\in U$ for all $n\geq m$, and we say that $(x_n)_{n\geq 1}$ is **convergent** in X when $x_n\to a$ for some $a\in X$.
 - (a) Show that if X is Hausdorff then every convergent sequence in X has a unique limit in X.
 - (b) Show that if every convergent sequence in X has a unique limit in X then every 1-point subset of X is closed in X
 - (c) In the case that $X = \mathbb{Z}$ with the co-finite topology $\mathcal{T} = \{A \subseteq \mathbb{Z} \mid A = \emptyset \text{ or } \mathbb{Z} \setminus A \text{ is finite}\}$, and $x_n = n^2$ for all $n \in \mathbb{Z}^+$, find all points $a \in X$ for which $x_n \to a$ in X.