PMATH 347 Groups and Rings, Solutions to the Midterm Test, Spring 2024

1: (a) Show that U_{21} is not cyclic.

Solution: In $U_{21} = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}$ we have

Since |8| = |20| = 2 and a cyclic group has at most one element of order 2, U_{21} cannot be cyclic.

(b) Show that U_{26} is cyclic.

Solution: In $U_{26} = \{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$ we have

Since $|U_{26}| = 12$ we must have |7| = 1, 2, 3, 4, 6 or 12. From the above table, $|7| \neq 1, 2, 3, 4$ or 6, so we must have |7| = 12. Thus $U_{26} = \langle 7 \rangle$.

(c) Let $a \in G$ with |a| = 40. List all the elements $x = a^k \in \langle a \rangle$ such that $|x^6| = 10$.

Solution: Since $\varphi(10) = 4$, there are 4 elements of order 10. Note that $|a^4| = 10$ and $U_{10} = \{1, 3, 7, 9\}$ so the 4 elements of order 10 are $a^{4\cdot 1}$, $a^{4\cdot 3}$, $a^{4\cdot 7}$ and $a^{4\cdot 9}$. Thus for $x = a^k \in \langle a \rangle$ we have

$$|x^6| = 10 \iff x^6 \in \{a^4, a^{12}, a^{28}, a^{36}\} \iff a^{6k} \in \{a^4, a^{12}, a^{28}, a^{36}\} \iff 6k \in \{4, 12, 28, 36\} \ (\bmod{\,40}) \iff 3k \in \{2, 6, 14, 18\} \ (\bmod{\,20}) \iff k \in \{14, 2, 18, 6\} \ (\bmod{\,20}) \,.$$

Thus the required elements are $x = a^2, a^6, a^{14}, a^{18}, a^{22}, a^{26}, a^{34}, a^{38}$.

2: (a) Find every $X \in D_{15}$ such that $X^5F_1 = F_4X$.

Solution: When $X = R_k$ we have

$$X^5F_1 = F_4X \iff R_{5k}F_1 = F_4R_k \iff F_{5k+1} = F_{4-k} \iff 5k+1 = 4-k \pmod{15}$$

 $\iff 6k = 3 \pmod{15} \iff 2k = 1 \pmod{5} \iff k = 3 \pmod{5}$

and when $X = F_k$ we have

$$X^5F_1 = F_4X \iff F_kF_1 = F_4F_k \iff R_{k-1} = R_{4-k} \iff k-1 = 4-k \pmod{15}$$

 $\iff 2k = 5 \pmod{15} \iff k = 10 \pmod{15}.$

Thus the solutions are $X = R_3, R_8, R_{13}, F_{10}$.

(b) List all of the elements in each conjugacy class in D_{10} .

Solution: First we find the conjugacy classes of each rotation R_{ℓ} . Since $R_k R_{\ell} R_{-k} = R_k R_{\ell-k} = R_{\ell}$ and $F_k R_{\ell} F_k = F_k F_{\ell+k} = R_{-\ell}$ we have $Cl(R_{\ell}) = \{R_{\ell}, R_{-\ell}\}$. Next we find the conjugacy class of each reflection F_{ℓ} . Since $R_k F_{\ell} R_{-k} = R_k F_{\ell+k} = F_{\ell+2k}$ and $F_k F_{\ell} F_k = F_k R_{\ell-k} = F_{2k-\ell}$ we have $Cl(F_{\ell}) = \{F_{\ell+2k} | k \in \mathbb{Z}_5\}$. Thus the distinct conjugacy classes are

$$\{I\}$$
, $\{R_1, R_9\}$, $\{R_2, R_8\}$, $\{R_3, R_7\}$, $\{R_4, R_6\}$, $\{R_5\}$, $\{F_0, F_2, F_4, F_6, F_8\}$, $\{F_1, F_3, F_5, F_7, F_9\}$.

(c) Find two non-cyclic subgroups of order 6 in D_9 .

Solution: We have $D_9 = \{I, R_1, R_2, R_3, \dots, R_8, F_0, F_1, \dots, F_8\}$. Note that

$$D_3 = \{I, R_3, R_6, F_0, F_3, F_6\}$$

is one subgroup of D_9 . Another is

$$H = \{I, R_3, R_6, F_1, F_4, F_7\};$$

indeed we have $I \in H$ and H is closed under composition since $R_{3k}R_{3\ell} = R_{3(k-\ell)}$, $R_{3k}F_{3\ell+1} = F_{3(k+\ell)+1}$, $F_{3k+1}R_{3\ell} = F_{3(k-\ell)+1}$ and $F_{3k+1}F_{3\ell+1} = R_{3(k-\ell)}$. These two subgroups are not cyclic since they each contain 3 reflections F_k which are of order 2 (and a cyclic group can have at most one element of order 2).

3: (a) Find the number of elements of each order in the group $\mathbb{Z}_4 \times \mathbb{Z}_{10}$.

Solution: We make a table listing all possibilities for |a| and |b| with $a \in \mathbb{Z}_4$ and $b \in \mathbb{Z}_{10}$, then summarize the results in a second table.

a	# of a	b	# of	(a,b)	# of (a,b)		
1	1	1	1	1	1		
		2	1	2	1		
		5	4	5	4	(a,b)	# of (a,b)
		10	4	10	4	1	1
2	1	1	1	2	1	2	3
		2	1	2	1	4	4
		5	4	10	4	5	4
		10	4	10	4	10	12
4	2	1	1	4	2	20	12
		2	1	4	2		
		5	4	20	8		
		10	4	20	8		

(b) Find the number of elements of order 6 in A_9 .

Solution: We list the possible cycle types for $\alpha \in S_9$ with $|\alpha| = 6$, we determine the parity $(-1)^{\alpha}$ for each, and when $(-1)^{\alpha} = 1$, so that $\alpha \in A_9$, we count the number of such α .

$$\begin{array}{lll} \text{cycle type of } \alpha & (-1)^{\alpha} & \# \text{ of such } \alpha \\ & (abcdef)(ghi) & -1 \\ & (abcdef)(gh) & 1 & \binom{9}{6} \cdot 5! \cdot \binom{3}{2} = 84 \cdot 120 \cdot 3 \\ & (abcdef) & -1 \\ & (abc)(def)(gh) & -1 \\ & (abc)(de)(fg)(hi) & -1 \\ & (abc)(de)(fg) & 1 & \binom{9}{3} \cdot 2 \cdot \binom{6}{4} \cdot 3 = 84 \cdot 2 \cdot 15 \cdot 3 \\ & (abc)(de) & -1 & \end{array}$$

Thus the number of $\alpha \in A_9$ with $|\alpha| = 6$ is $84 \cdot 360 + 84 \cdot 90 = 84 \cdot 450 = 42 \cdot 900 = 37800$.

4: (a) Show that for all $p, q \in \mathbb{Q}$, the subgroup of \mathbb{Q} generated by $\{p, q\}$ is cyclic.

Solution: Let $p, q \in \mathbb{Q}$. Write $p = \frac{k}{n}$ and $q = \frac{\ell}{m}$ where $k, \ell \in \mathbb{Z}$ and $n, m \in \mathbb{Z}^+$. For $r = \frac{1}{nm}$ we have $p = kr \in \langle r \rangle$ and $q = \ell r \in \langle r \rangle$ so that $\langle p, q \rangle \leq \langle r \rangle$. Since $\langle p, q \rangle$ is a subgroup of a cyclic group, it is cyclic.

In fact, we can find a formula for a generator of $\langle p,q\rangle$. To do this, write $p=\frac{k}{n}$ and $q=\frac{\ell}{n}$ where $k,\ell,n\in\mathbb{Z}$ with $n\neq 0$ (we are using a common denominator for p and q). Let $d=\gcd(k,\ell)$. We claim that $\langle p,q\rangle=\left\langle \frac{d}{n}\right\rangle$. Writing k=ds and $\ell=dt$, we have $p=\frac{k}{n}=\frac{ds}{n}\in\left\langle \frac{d}{n}\right\rangle$ and $q=\frac{\ell}{n}=\frac{dt}{n}\in\left\langle \frac{d}{n}\right\rangle$ and so $\{p,q\}\subseteq\left\langle \frac{d}{n}\right\rangle\subseteq\mathbb{Q}$ and hence $\langle p,q\rangle\leq\left\langle \frac{d}{n}\right\rangle$. On the other hand, choosing $s,t\in\mathbb{Z}$ so that $ks+\ell t=d$ we obtain $\frac{d}{n}=\frac{ks+\ell t}{n}=as+bt\in\langle a,b\rangle$ and so $\left\langle \frac{d}{n}\right\rangle\leq\langle p,q\rangle$.

(b) Let $a,b \in \mathbb{Z}^+$ with $\gcd(a,b) = 1$ and let $S = \left\{ \frac{ka}{b^n} \mid k \in \mathbb{Z}, n \in \mathbb{Z}^+ \right\}$. Show that S is the subring of \mathbb{Q} generated by $\frac{a}{b}$.

Solution: Let R be the subring of $\mathbb Q$ generated by $\frac{a}{b}$. Note that S is a ring because $0=\frac{0\cdot a}{b^1}\in S$, and given $x,y\in S$, say $x=\frac{ka}{b^n}$ and $y=\frac{\ell a}{b^m}$ where $k,\ell\in\mathbb Z$ and $n,m\in\mathbb Z^+$, we have $-x=\frac{(-k)a}{b^n}\in S$, $x+y=\frac{(b^mk+b^n\ell)a}{b^n+m}\in S$ and $xy=\frac{(k\ell a)a}{b^n+m}\in S$. Since S is a ring and $\frac{a}{b}\in S$, we have $R\subseteq S$. Since gcd(a,b)=1 we can choose $s,t\in\mathbb Z$ such that as+bt=1. We have $\frac{a}{b}\in R$. Let $n\geq 1$ and suppose,

Since $\gcd(a,b)=1$ we can choose $s,t\in\mathbb{Z}$ such that as+bt=1. We have $\frac{a}{b}\in R$. Let $n\geq 1$ and suppose, inductively, that $\frac{a}{b^n}\in R$. Since $\frac{a}{b^n}\in R$ we have $\frac{as}{b^n}\in R$ and $\frac{at}{b^n}\in R$, hence $\frac{a}{b^{n+1}}=\frac{a(as+bt)}{b^{n+1}}=\frac{a}{b}\cdot\frac{as}{b^n}+\frac{at}{b^n}\in R$. By induction, $\frac{a}{b^n}\in R$ for all $n\in\mathbb{Z}^+$, hence $\frac{ka}{b^n}\in R$ for all $k\in\mathbb{Z}$ and $n\in\mathbb{Z}^+$, so that $S\subseteq R$.

(c) Determine whether for all $p, q \in \mathbb{Q}$ there exists $a \in \mathbb{Q}$ such that the subring of \mathbb{Q} generated by $\{p, q\}$ is also generated (as a subring) by $\{a\}$.

Solution: This is true. For $X \subseteq \mathbb{Q}$, let $\langle X \rangle$ denote the additive subgroup of \mathbb{Q} generated by X, and let [X] denote the subring of \mathbb{Q} generated by X, and note that $\langle X \rangle \subseteq [X]$. Let $p,q \in \mathbb{Q}$. By Part (a), we can choose $a \in \mathbb{Q}$ such that $\langle p,q \rangle = \langle a \rangle$. Since $\{p,q\} \subseteq \langle a \rangle \subseteq [a]$, and [a] is a subring of \mathbb{Q} , we have $[p,q] \subseteq [a]$. Since $a \in \langle p,q \rangle \subseteq [p,q]$ and [p,q] is a subring of \mathbb{Q} , we have $[a] \subseteq [p,q]$.