1: Let
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ and $C = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, and let $Q_8 = \langle A, B \rangle \leq GL_2(\mathbb{C})$.

(a) Show that $Q_8 = \{I, A, B, C, -I, -A, -B, -C\}$ and make the multiplication table for Q_8 .

Solution: Let $S = \{I, A, B, C, -I, -A, -B, -C\}$. Note that $A^2 = -I$ and AB = C so we have

$$I = A^0$$
, $A = A^1$, $B = B^1$, $C = AB$, $-I = A^2$, $-A = A^3$, $-B = A^2B$ and $-C = A^2C = A^3B$

which all lie in $\langle A, B \rangle$. Thus we have $S \subseteq \langle A, B \rangle$. Here is the multiplication table for S:

The table shows that the set S is closed under multiplication and that each element in S has an inverse in S, and hence $S \leq GL_2(\mathbb{C})$. Since $S \leq GL_2(\mathbb{C})$ and $\{A, B\} \subseteq S$ we have $\langle A, B \rangle \subseteq S$ by the definition of $\langle A, B \rangle$.

(b) Find the number of elements of each order in Q_8 .

Solution: With the help of the multiplication table, we make a table of powers, and we list the order of each element on the last row.

We see that Q_8 has 1 element of order 1, 1 element of order 2, and 6 elements of order 8.

(c) Find an abelian group which has the same number of elements of each order as $\mathbb{Z}_2 \times Q_8$.

Solution: In $\mathbb{Z}_2 \times Q_8$ we have

and in $\mathbb{Z}_4 \times \mathbb{Z}_4$ we have

Thus the groups $\mathbb{Z}_2 \times Q_8$ and $\mathbb{Z}_4 \times \mathbb{Z}_4$ have the same number of elements of each order.

2: (a) Find a group of the form $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_l}$, with $n_i | n_{i+1}$ for all i, which is isomorphic to $\mathbb{Z}_{18} \times \mathbb{Z}_{60} \times \mathbb{Z}_{70} \times \mathbb{Z}_{100}$. Solution: We have

$$\mathbb{Z}_{18} \times \mathbb{Z}_{60} \times \mathbb{Z}_{70} \times \mathbb{Z}_{100} \cong (\mathbb{Z}_{2} \times \mathbb{Z}_{9}) \times (\mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}) \times (\mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{7}) \times (\mathbb{Z}_{4} \times \mathbb{Z}_{5})
\cong (\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{4}) \times (\mathbb{Z}_{3} \times \mathbb{Z}_{9}) \times (\mathbb{Z}_{5} \times \mathbb{Z}_{5} \times \mathbb{Z}_{25}) \times (\mathbb{Z}_{7})
\cong (\mathbb{Z}_{2}) \times (\mathbb{Z}_{2} \times \mathbb{Z}_{5}) \times (\mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}) \times (\mathbb{Z}_{4} \times \mathbb{Z}_{9} \times \mathbb{Z}_{25} \times \mathbb{Z}_{7})
\cong \mathbb{Z}_{2} \times \mathbb{Z}_{10} \times \mathbb{Z}_{60} \times \mathbb{Z}_{6300}.$$

(b) Find a group of the form $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_l}$, with $n_i | n_{i+1}$ for all i, which is isomorphic to $U_{100}/\langle 21 \rangle$.

Solution: Note that $|U_{100}| = \varphi(100) = \varphi(4)\varphi(25) = 2 \cdot 20 = 40$. The powers of 21 modulo 100 are $(21^k)_{k \geq 0} = (1, 21, 41, 61, 81, 1, \cdots)$, so we have $\langle 21 \rangle = \{1, 21, 41, 61, 81\}$ and $|\langle 21 \rangle| = 5$. Thus |G| = 8 and so $G \cong \mathbb{Z}_8$, $\mathbb{Z}_2 \times \mathbb{Z}_4$ or $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. Since $3 \notin \langle 21 \rangle$, $3^2 = 9 \notin \langle 21 \rangle$, $3^3 = 27 \notin \langle 21 \rangle$ and $3^4 = 81 \in \langle 21 \rangle$, we see that the coset $3\langle 21 \rangle$ has order 4 in G, and so $G \ncong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ (which has no elements of order 4). Also we have $9^2 = 81 \in \langle 21 \rangle$ and $99^2 = (-1)^2 = 1 \in \langle 21 \rangle$ so the cosets $9\langle 21 \rangle$ and $99\langle 21 \rangle$ both have order 2. These cosets are distinct since $99/9 = 11 \notin \langle 21 \rangle$ so G has at least 2 elements of order 2 and hence $G \ncong \mathbb{Z}_8$. Thus $G \cong \mathbb{Z}_2 \times \mathbb{Z}_4$.

(c) Find the number of distinct abelian groups of order 2,000,000 (up to isomorphism).

Solution: We have $2,000,000 = 2^75^6$. The possible ways to choose (k_1,k_2,\cdots,k_l) with $1 \le k_1 \le k_2 \le \cdots \le k_l$ and $k_1 + k_2 + \cdots + k_l = 7$ are as follows $(1,1,1,1,1,1,1), (1,1,1,1,1,2), (1,1,1,2,2), (1,2,2,2), (1,1,1,1,3), (1,1,2,3), (2,2,3), (1,3,3), (1,1,1,4), (1,2,4), (3,4), (1,1,5), (2,5), (1,6) and (7), and so there are 15 ways to choose the terms corresponding to <math>2^7$. The possible ways to choose (k_1,k_2,\cdots,k_l) with $1 \le k_1 \le k_2 \le \cdots \le k_l$ and $k_1 + k_2 + \cdots + k_l = 6$ are as follows (1,1,1,1,1,1), (1,1,1,1,2), (1,1,2,2), (2,2,2), (1,1,1,3), (1,2,3), (3,3), (1,1,4), (2,4), (1,5) and (6), and so there are 11 ways to choose the terms corresponding to 2^6 . Thus there are $15 \cdot 11 = 165$ abelian groups of order 2,000,000.

(d) Determine which abelian group of order 72 has the most elements of order 6.

Solution: We have $72 = 2^3 3^2$. The abelian groups of order 72 are the groups of the form $G = H \times K$ where $H = \mathbb{Z}_8$, $\mathbb{Z}_4 \times \mathbb{Z}_2$ or $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, and $K = \mathbb{Z}_9$ or $\mathbb{Z}_3 \times \mathbb{Z}_3$. The elements of order 6 in G are the elements (a,b) with |a| = 2 in H and |B| = 3 in K. Every non-identity element of $H = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ has order 2, and every non-identity element of $K = \mathbb{Z}_3 \times \mathbb{Z}_3$ has order 3. So the group $G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3$ has the most elements of order 6.

3: (a) How many ways (up to D_9 symmetry) can the elements of C_9 be coloured using 3 colours?

Solution: Let S be the set of all possible colourings (without considering the D_9 symmetry) so $|S| = 3^9$. The action of D_9 on C_9 induces an action on S. We make a table showing the value of |Fix(A)| for each $A \in D_9$.

A	# of such A	$ \operatorname{Fix}(A) $
I	1	3^{9}
R_3, R_6	2	3^3
$R_1, R_2, R_4, R_5.R_7, R_8$	6	3^1
$F_0, F_1, F_2, \cdots, F_9$	9	3^5

So the number of colourings, up to the D_9 symmetry, is equal to the number of orbits which is equal to

$$|S/G| = \frac{1}{18} (1 \cdot 3^9 + 2 \cdot 3^3 + 6 \cdot 3^1 + 9 \cdot 3^5) = 1219.$$

(b) How many ways (up to rotational symmetry) can the 12 vertices of a regular icosahedron be coloured using 2 colours?

Solution: Let G be the rotation group of the regular icosahedron. If we consider the action of G on the set of 12 vertices of the icosahedron, which we label by $1, 2, \dots 12$, then we have $|\operatorname{Orb}(1)| = 12$ and $|\operatorname{Stab}(1)| = 5$ and so $|G| = 12 \cdot 5 = 60$. Now, let S be the set of all colourings of the 12 vertices, (without considering rotational symmetry), so that $|S| = 2^{12}$. The action of G on the set of vertices induces an action on S. We make a table showing $|\operatorname{Fix}(R)|$ for each $R \in G$.

R	#	Fiz	$\kappa(R)$
the identity	1	2^{12}	
rotation by $\pm \frac{2\pi}{3}$ about an axis through a pair of opposite faces	20	2^{4}	(4 groups of 3)
rotation by π about an axis through a pair of opposite edges	15	2^{6}	(6 groups of 2)
rotation by $\pm \frac{2\pi}{5}, \pm \frac{4\pi}{5}$ about an axis through a pair of opposite vertices	24	2^{4}	(2 vertices+ 2 groups of 5)

So the number of colourings, up to the rotational symmetry, is equal to the number of orbits which is

$$|S/G| = \frac{1}{60} (1 \cdot 2^{12} + 20 \cdot 2^4 + 15 \cdot 2^6 + 24 \cdot 2^4) = 96.$$

4: (a) Show that if G is a finite group with |G| odd, and $a \in G$ with |Cl(a)| = 3, then G is not simple.

Solution: Let G we a group with |G| odd. Let $a \in G$ with $|\operatorname{Cl}(a)| = 3$. Let G act on itself by conjugation so that $\operatorname{Orb}(a) = \operatorname{Cl}(a)$. Let $H = \operatorname{Stab}(a)$. By the Orbit Stabilizer Theorem, we have $|G/H| = |\operatorname{Orb}(a)| = 3$. Since |G| is even, 3 is the smallest prime divisor of |G| and so we know that $H \subseteq G$. Since |G/H| = 3 we cannot have H = G. Since $|\operatorname{Cl}(a)| = 3$ and $\operatorname{Cl}(e) = \{e\}$ so that $a \neq e$, and since $a \in \operatorname{Stab}(a)$, we know that $H \neq \{e\}$.

(b) Show that if a group G has a proper subgroup of finite index, then G has a proper normal subgroup of finite index.

Solution: Let G be a group with a proper subgroup $H \leq G$ with finite index |G/H| = n. Let G act on G/H by a*(bH) = (ab)H. Let $\rho: G \to \operatorname{Perm}(G/H)$ be the associated representation, given by $\rho(a)(bH) = (ab)H$. Let $K = \operatorname{Ker}(\rho) = \{a \in G | \rho(a) = I\} = \{a \in G | abH = bH \text{ for all } b \in G\}$. Note that $K \subseteq G$. We have $K \subseteq H$ because if $A \in K$ then we have $A \in H = A$ so that $A \in H$. Since $A \in H \subseteq G$ we know that $A \in H$ is a proper normal subgroup of $A \in G$. Also, by the First Isomorphism Theorem, we have $A \in G/K \cong \rho(G) \subseteq \operatorname{Perm}(G/H)$ and so $A \in G/K \cong \rho(G/H) = n$ so the index of $A \in G$ is finite.

(c) Show that if G is a group with $|G| = p^k$ where p is prime and $k \in \mathbb{Z}^+$, then $Z(G) \neq \{e\}$.

Solution: This follows quickly from the Conjugacy Class Equation. We provide a detailed solution which recalls the proof of the Conjugacy Class Equation. Let G act on itself by conjugation so that for each $a \in G$ we have $Orb(a) = Cl(a) = \{xax^{-1} | x \in G\}$. Note that

$$a \in Z(G) \iff xax^{-1} = a \text{ for all } x \in G \iff Cl(a) = \{a\} \iff |Cl(a)| = 1.$$

By the Orbit Stabilizer Theorem, the order of each orbit divides $|G| = p^k$. For $i = 0, 1, \dots, k$, let n_i be the number of orbits of size p^i . The orbits of size 1 are the orbits $\{a\}$ where $a \in Z(G)$ so we have $n_0 = |Z(G)|$. Since G is the disjoint union of the distinct orbits we have

$$p^{k} = |G| = \sum_{i=0}^{k} n_{i} p^{i} = n_{0} + \sum_{i=1}^{k} n_{i} p^{i} = |Z(G)| + \sum_{i=1}^{k} n_{i} p^{i}$$

and so

$$|Z(G)| = p^k - \sum_{i=1}^k n_i p^i = 0 \mod p.$$

Since $e \in Z(G)$ so that $|Z(G)| \neq 0$, we have |Z(G)| = kp for some $k \in \mathbb{Z}^+$. In particular, $Z(G) \neq \{e\}$.