1: Let
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ and $C = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, and let $Q_8 = \langle A, B \rangle \leq GL_2(\mathbb{C})$.

- (a) Show that $Q_8 = \{I, A, B, C, -I, -A, -B, -C\}$ and make the multiplication table for Q_8 .
- (b) Find the number of elements of each order in Q_8 .
- (c) Find an abelian group which has the same number of elements of each order as $\mathbb{Z}_2 \times Q_8$.
- **2:** (a) Find a group of the form $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_l}$, with $n_i | n_{i+1}$ for all i, which is isomorphic to $\mathbb{Z}_{18} \times \mathbb{Z}_{60} \times \mathbb{Z}_{70} \times \mathbb{Z}_{100}$.
 - (b) Find a group of the form $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_l}$, with $n_i | n_{i+1}$ for all i, which is isomorphic to $U_{100}/\langle 21 \rangle$.
 - (c) Find the number of distinct abelian groups of order 2,000,000 (up to isomorphism).
 - (d) Determine which abelian group of order 72 has the most elements of order 6.
- 3: (a) How many ways (up to D_9 symmetry) can the elements of C_9 be coloured using 3 colours?
 - (b) How many ways (up to rotational symmetry) can the 12 vertices of a regular icosahedron be coloured using 2 colours?
- **4:** (a) Show that if G is a finite group with |G| odd, and $a \in G$ with |Cl(a)| = 3, then G is not simple.
 - (b) Show that if a group G has a proper subgroup of finite index, then G has a proper normal subgroup of finite index.
 - (c) Show that if G is a group with $|G| = p^k$ where p is prime and $k \in \mathbb{Z}^+$, then $Z(G) \neq \{e\}$.