1: (a) Let $H = \{(1), (12)(34), (13)(24), (14)(23)\} \leq S_4$. Show that $H \subseteq S_4$ and determine which of the two groups \mathbb{Z}_6 and S_3 is isomorphic to S_4/H .

Solution: Since $|S_4| = 24$ and |H| = 4, there are 6 left cosets; (1)H = H, $(12)H = \{(12), (34), (1324), (1423)\}$, $(13)H = \{(13), (1234), (24), (1432)\}$, $(14)H = \{(14), (1243), (1342), (23)\}$, $(123)H = \{(123), (134), (243), (142)\}$ and $(124)H = \{(124), (143), (132), (234)\}$.

Also, we have H(1) = H, $H(12) = \{(12), (34), (1423), (1324)\}$, $H(13) = \{(13), (1432), (24), (1234)\}$, $H(14) = \{(14), (1342), (1243), (23)\}$, $H(123) = \{(123), (243), (142), (134)\}$, $H(124) = \{(124), (234), (143), (132)\}$. Since the left cosets are equal to the right cosets, H is normal.

Since S_4/H has 6 elements, by the Classification of Groups of Order 2p, where p is prime, we know that either $S_4/H \cong \mathbb{Z}_6$ or $S_4/H \cong D_3$. In S_4/H we have $\left((12)H\right)^2 = \left((13)H\right)^2 = \left((14)H\right)^2 = H$, so S_4/H has (at least) 3 elements of order 2 while \mathbb{Z}_6 has only 2 elements of order 2, so $S_4/H \cong D_3$.

(b) Let $H = \langle (2, -1), (2, 3) \rangle \leq \mathbb{Z}^2$. Show that $|\mathbb{Z}^2/H| = 8$, determine which of the three groups \mathbb{Z}_8 , $\mathbb{Z}_4 \times \mathbb{Z}_2$ or \mathbb{Z}_2^3 is isomorphic to \mathbb{Z}^2/H , and find a surjective group homomorphism ϕ from \mathbb{Z}^2 to one of these three groups with $\text{Ker}(\phi) = H$.

Solution: First note that $\langle (2,-1), (2,3) \rangle = \langle (2,-1), (8,0) \rangle$. Indeed, we have $(2,-1) \in \langle (2,-1), (8,0) \rangle$ and $(2,3) = -3(2,-1) + 1(8,0) \in \langle (2,-1), (8,0) \rangle$, which implies that $\langle (2,-1), (2,3) \rangle \subseteq \langle (2,-1), (8,0) \rangle$, and we also have $(2,-1) \in \langle (2,-1), (2,3) \rangle$ and $(8,0) = 3(2,-1) + 1(2,2) \in \langle (2,-1), (2,3) \rangle$ which implies that $\langle (2,-1), (8,0) \rangle \subseteq \langle (2,-1), (2,3) \rangle$. Thus $H = \langle (2,-1), (8,0) \rangle = \operatorname{Span}_{\mathbb{Z}} \{(2,-1), (8,0)\}$.

Next, we claim that every coset is of the form (r,0) + H for some integer r with $0 \le r < 8$. To show this, let $(a,b) \in \mathbb{Z}^2$. Since $b(2,-1) \in H$, we have

$$(a,b) + H = (a,b) + b(2,-1) + H = (a+2b,0) + H$$
.

Using the Division Algorithm, write a + 2b = 8q + r with 0 < r < 8. Then since $q(8,0) \in H$, we have

$$(a+2b,0) + H = (a+2b,0) - q(8,0) + H = (r,0) + H$$
.

Thus every coset is of the form (r,0) + H for some r with $0 \le r < 8$, as claimed.

Next, we claim that the 8 cosets (r,0)+H with $0 \le r < 8$ are all distinct. To show this, suppose for a contradiction that $(r_1,0)+H=(r_2,0)+H$ with $0 \le r_1 < r_2 < 8$. Let $r=r_2-r_1$ and note that 0 < r < 8. Then $(r,0)+H=\left((r_2,0)-(r_1,0)\right)+H=\left((r_2,0)+H\right)-\left((r_1,0)+H\right)\right)=(0,0)+H=H$ and so we have $(r,0)\in H$. Since $H=\left<(2,-1),(8,0)\right>$, this means that (r,0)=k(2,-1)+l(8,0) for some $k,l\in\mathbb{Z}$. To have (r,0)=k(2,-1)+l(8,0)=(2k+8l,-k) we must have k=0 and r=8l. But r cannot be a multiple of 8 since 0 < r < 8, so we have the desired contradiction. Thus there are exactly 8 cosets so $|\mathbb{Z}^2/H|=8$.

Also, note that $\mathbb{Z}^2/H = \{(r,0) + H | 0 \le r < 8\} = \langle (1,0) + H \rangle$, and so we have $\mathbb{Z}^2/H \cong \mathbb{Z}_8$.

Finally, let $\phi: \mathbb{Z}^2 \to \mathbb{Z}_8$ be the group homomorphism given by $\phi(k,\ell) = k+2\ell \in \mathbb{Z}_8$. We claim that $\operatorname{Ker} \phi = H$. Let $(k,\ell) \in \operatorname{Ker} \phi$. Then $k+2\ell=0$ in \mathbb{Z}_8 , that is $k+2\ell=0$ mod 8 in \mathbb{Z} . Choose $t \in \mathbb{Z}$ such that $k+2\ell=8t$. Then we have $(k,\ell) = -\ell(2,-1) + t(8,0) \in \operatorname{Span}\{(2,-1),(8,0)\} = H$. Now let $(k,\ell) \in H = \operatorname{Span}\{(2,-1),(2,3)\}$, say $(k,\ell) = s(2,-1) + t(2,3)$ where $s,t \in \mathbb{Z}$. Then $\phi(k,\ell) = k+2\ell = (2s+2t) + 2(-s+3t) = 8t = 0 \in \mathbb{Z}_8$ so that $(k,\ell) \in \operatorname{Ker} \phi$.

- **2:** (The Second Isomorphism Theorem) Let G be a group and let $H, K \leq G$.
 - (a) Show that $HK \leq G \iff HK = KH$.

Solution: Suppose that $HK \leq G$. Let $a \in HK$. Since $HK \leq G$ we also have $a^{-1} \in HK$, say $a^{-1} = hk$ (where here and below, h and h_i denote elements of H and k and k_i denote elements in K). Then $a = k^{-1}h^{-1} \in KH$ and so we have $HK \subseteq KH$. Let $b \in KH$, say $b = k_1h_1$. Then $b^{-1} = h_1^{-1}k_1^{-1} \in HK \subseteq KH$, say $b^{-1} = k_2h_2$. Then $b = h_2^{-1}k_2^{-1} \in HK$, and so we have $KH \subseteq HK$.

Conversely, suppose that HK = KH. Note that $e = e \cdot e \in HK$. Suppose $a, b \in HK$, say $a = h_1k_1$ and $b = h_2k_2$. Since $k_1h_2 \in KH = HK$ we can write $k_1h_2 = h_3k_3$. Then $ab = h_1k_1h_2k_2 = h_1h_3k_3k_2 \in HK$. Thus HK is closed under the operation. Also, we have $a^{-1} = k_1^{-1}h_1^{-1} \in KH = HK$ so HK is closed under inversion.

(b) Show that if $K \subseteq G$ then $K \cap H \subseteq H$, $KH \subseteq G$ and $K \subseteq KH$.

Solution: Suppose that $K \subseteq G$. We shall show that $K \cap H \subseteq H$ in part (c) below. We claim that $KH \subseteq G$. Let $a \in HK$, say a = hk. Since $K \subseteq G$ we have $hkh^{-1} \in K$ and so $a = hkh^{-1}h \in KH$. Thus $HK \subseteq KH$. Let $b \in KH$, say b = kh. Since $K \subseteq G$ we have $h^{-1}kh \in K$ and so $b = hh^{-1}kh \in HK$. Thus $KH \subseteq HK$. Since HK = KH we have $HK \subseteq G$, by part (a). Next we note that since $K \subseteq G$ we have $K \subseteq L$ for every group L with $K \subseteq L \subseteq G$ (since for $k \in K$ and $k \in L$ we have $k \in L$), and so in particular $k \subseteq HK$.

(c) Show that if $K \subseteq G$ then $H/(K \cap H) \cong KH/K$.

Solution: Let $K \subseteq G$. Note that $HK = KH \le G$ and $K \subseteq KH$ by Part (b). Define $\phi: H \to KH/K$ by $\phi(h) = hK$. Note that ϕ is well-defined since $h = e \cdot h \in KH$ so that $hK \in KH/K$. Note that ϕ is a homomorphism since $\phi(h_1h_2) = h_1h_2K = (h_1K)(h_2K) = \phi(h_1)\phi(h_2)$. Note that ϕ is surjective since given $b \in KH/K$, say b = khK, we have $kh \in KH = HK$, say $kh = h_1, k_1$, then $\phi(h_1) = h_1K = h_1k_1K = khK$. Finally, note that $Ker(\phi) = \{h \in H | \phi(h) = eK\} = \{h \in H | hK = K\} = \{h \in H | h \in K\} = K \cap H \text{ and so by the First Isomorphism Theorem we have <math>K \cap H \subseteq H$, as required for Part (b), and $H/(K \cap H) \cong KH/H$.

(d) Show that (even if $K \not \supseteq G$) we have $|H||K| = |KH||K \cap H|$ (you may suppose that G is finite).

Solution: Since KH is the disjoint union of the distinct cosets kH with $k \in K$, and since |kH| = |H| for all $k \in K$, we have $|KH| = \left| \{kH | k \in K\} \mid |H|$. Define $\Phi : \{kH | k \in K\} \rightarrow K/(K \cap H)$ by $\Phi(kH) = k(K \cap H)$. Then Φ is well defined since $k_1H = k_2H \Longrightarrow k_2^{-1}k_1 \in K \Longrightarrow k_2^{-1}k_1 \in (K \cap H) \Longrightarrow k_1(K \cap H) = k_2(K \cap H)$, and Φ is injective since $k_1(K \cap H) = k_2(K \cap H) \Longrightarrow k_2^{-1}k_1 \in (K \cap H) \Longrightarrow k_2^{-1}k_1 \in K \Longrightarrow k_1H = k_2H$, and Φ is clearly surjective. Thus $\left| \{kH | k \in K\} \right| = \left| K/(K \cap H) \right|$ and so we have $\left| KH \right| = \left| K/(K \cap H) \right| |H|$ and hence $\left| H \right| |K| = \left| KH \right| |K \cap H|$.

3: (a) (The Normalizer/Centralizer Theorem) Let G be a group and let $H \leq G$. Recall that the **centralizer** of H in G is the group $C(H) = C_G(H) = \{a \in G | ax = xa \text{ for all } x \in H\} \leq G$ and the **normalizer** of H in G is the group $N(H) = N_G(H) = \{a \in G | aH = Ha\} \leq G$. Show that $C(H) \subseteq N(H)$ and that N(H)/C(H) is isomorphic to a subgroup of Aut(H).

Solution: First we show that $N(H) \leq G$. We have $e \in N(H)$ since eH = H = He. Suppose that $a, b \in N(H)$, so we have aH = Ha and bH = Hb. Let $x \in abH$, say x = abh. We have $bh \in bH = Hb$, say $bh = h_1b$, and then we have $ah_1 \in aH = Ha$, say $ah_1 = h_2a$. Then $x = abh = ah_1b = h_2ab \in Hab$. This shows that $abH \subseteq Hab$. Similarly, we have $Hab \subseteq abH$ so that abH = Hab, and so $ab \in N(H)$. Thus N(H) is closed under the operation. Let $y \in a^{-1}H$, say $y = a^{-1}h$. We have $ha \in Ha = aH$, say $ha = ah_1$. Then $y = a^{-1}h = a^{-1}haa^{-1} = a^{-1}ah_1a^{-1} = h_1a^{-1} = Ha^{-1}$. This shows that $a^{-1}H \subseteq Ha^{-1}$. Similarly, $Ha^{-1} \subseteq a^{-1}H$ so that $a^{-1}H = Ha^{-1}$. Thus $a^{-1} \in N(H)$, so N(H) is closed under inversion.

Also, note that $C(H) \subseteq N(H)$ since $a \in C(H) \Longrightarrow ah = ha$ for all $h \in H \Longrightarrow aH = Ha \Longrightarrow a \in N(H)$. Define $\phi: N(H) \to \operatorname{Aut}(H)$ by $\phi(a) = C_a$ where $C_a: H \to H$ is the (restriction of) the conjugation map given by $C_a(x) = axa^{-1}$ for all $x \in H$. To see that the map ϕ is well-defined, we note that for $a \in N(H)$ and $h \in H$, we have $ah \in aH = Ha$, say $ah = h_1a$, and then $C_a(h) = aha^{-1} = h_1aa^{-1} = h_1 \in H$. It follows that the conjugation map $C_a: G \to G$ does restrict to give a map $C_a: H \to H$. This restriction is an automorphism with $C_a^{-1} = C_{a^{-1}}$ so ϕ is well-defined. The map ϕ is a homomorphism since $\phi(ab) = C_{ab} = C_a C_b = \phi(a)\phi(b)$. Also, we have

$$\operatorname{Ker}(\phi) = \left\{ a \in N(H) \middle| axa^{-1} = x \text{ for all } x \in H \right\} = \left\{ a \in N(H) \middle| ax = xa \text{ for all } x \in H \right\}$$
$$= N(H) \cap C(H) = C(H) \text{ since } C(H) \subseteq N(H).$$

By the First Isomorphism Theorem, $C(H) \subseteq N(H)$ and $N(H)/C(H) \cong \phi(N(H)) \leq \text{Perm}(H)$.

(b) (The Orbit/Stabilizer Theorem) Let A be a nonempty set and let G be a finite subgroup of Perm(A). For $a \in A$, the **orbit** of a is the set $Orb(a) = \{\sigma(a) \mid \sigma \in G\} \subseteq A$, and the **stabilizer** of a is the set $Orb(a) = \{\sigma(a) \mid \sigma \in G\} \subseteq A$, we have $Orbit(a) = \{\sigma(a) \mid \sigma(a) = a\}$. Show that for all $a \in A$, we have $Orbit(a) \subseteq A$ and $Orbit(a) \subseteq A$ and Orbit(a

Solution: We note that $\operatorname{Stab}(a)$ is a subgroup of G by the Finite Subgroup Test because the identity element is the identity function I which satisfies I(a) = a so that $I \in \operatorname{Stab}(a)$, and because given $\sigma, \tau \in \operatorname{Stab}(a)$ so that $\sigma(a) = a$ and $\sigma(a) = a$, we have $\sigma(a) = \sigma(a) = a$ so that $\sigma(a) = a$ so

Define $F: G/\operatorname{Stab}(a) \to \operatorname{Orb}(a)$ by $F(\sigma \operatorname{Stab}(a)) = \sigma(a)$, where $\sigma \in G$. Note that F is well-defined because for $\sigma, \tau \in G$, if $\sigma \operatorname{Stab}(a) = \tau \operatorname{Stab}(a)$ then $\tau^{-1}\sigma \in \operatorname{Stab}(a)$ so that $\tau^{-1}\sigma(a) = a$ and hence $\sigma(a) = \tau \tau^{-1}\sigma(a) = \tau(\tau^{-1}\sigma(a)) = \tau(a)$. The map F is clearly surjective, and F is also injective because, given $\sigma, \tau \in G$, if $F(\sigma \operatorname{Stab}(a)) = F(\tau \operatorname{Stab}(a))$ then we have $\sigma(a) = \tau(a)$ and hence $\tau^{-1}\sigma(a) = a$ so that $\sigma \operatorname{Stab}(a) = \tau \operatorname{Stab}(a)$. Since F is bijective, we have $|G/\operatorname{Stab}(a)| = |\operatorname{Orb}(a)|$. By Lagrange's Theorem, it follows that $|G| = |G/\operatorname{Stab}(a)| |\operatorname{Stab}(a)| = |\operatorname{Orb}(a)| |\operatorname{Stab}(a)|$.

4: In this problem, when R is a ring and $X \subseteq R$, $\langle X \rangle$ denotes the ideal in R generated by X.

(a) Find the number of elements in $\mathbb{Z}^2/\langle (3,1)\rangle$.

Solution: More generally, let us find the number of elements in $\mathbb{Z}^2/\langle (a,b)\rangle$ where $a,b\in\mathbb{Z}$. For $(a,b)\in\mathbb{Z}^2$ we have $\langle (a,b)\rangle=\{(a,b)(s,t)|s,t\in\mathbb{Z}\}=\{(as,bt)|s,t\in\mathbb{Z}\}$. Define a map $\phi:\mathbb{Z}^2\to\mathbb{Z}/\langle a\rangle\times\mathbb{Z}/\langle b\rangle$ by $\phi(k,l)=(k+\langle a\rangle,l+\langle b\rangle)$. It is easy to check that ϕ is a surjective ring homomorphism with

$$\operatorname{Ker}(\phi) = \left\{ (k, l) \in \mathbb{Z}^2 \middle| k \in \langle a \rangle, l \in \langle b \rangle \right\} = \langle (a, b) \rangle.$$

Thus $\mathbb{Z}^2/\langle (a,b)\rangle \cong \mathbb{Z}/\langle a\rangle \times \mathbb{Z}/\langle b\rangle$. We conclude that if a=0 or b=0 then $|\mathbb{Z}^2/\langle (a,b)\rangle|=\infty$ and otherwise $|\mathbb{Z}^2/\langle (a,b)\rangle|=|a|\,|b|$. In particular, $|\mathbb{Z}^2/\langle (3,1)\rangle|=3$.

(b) Find the number of elements in $\mathbb{Z}[i]/\langle 3+i\rangle$.

Solution: Note that

$$\langle 3+i\rangle = \left\{(3+i)(k+i\ell)\big|k,\ell\in\mathbb{Z}\right\} = \left\{k(3+i)+\ell(-1+3i)\big|k,\ell\in\mathbb{Z}\right\} = \operatorname{Span}_{\mathbb{Z}}\left\{(3+i),(-1+3i)\right\}.$$

Let $H = \operatorname{Span}_{\mathbb{Z}} \{(3,1), (-1,3)\} \subseteq \mathbb{Z}^2$. Define $\phi : \mathbb{Z}[i]/\langle 3+i \rangle \to \mathbb{Z}^2/H$ by $\phi \big((x+iy)+\langle 3+i \rangle \big) = (x,y)+H$. The map ϕ is clearly bijective (it is an isomorphism of groups, but not of rings) so we have $\big| \mathbb{Z}[i]/\langle 3+i \rangle \big| = \big| \mathbb{Z}^2/H \big|$. Consider the quotient group \mathbb{Z}^2/H . Since (10,0) = 3(-1,3) - (3,1) and since (3,1) = 3(1,0) + (0,1) we have

$$\begin{split} H &= \mathrm{Span}_{\mathbb{Z}} \big\{ (3,1), (-1,3) \big\} = \mathrm{Span}_{\mathbb{Z}} \big\{ (3,1), (10,0) \big\} = \mathrm{Span}_{\mathbb{Z}} \big\{ 10(1,0), (3,1) \big\} \text{ and } \\ \mathbb{Z}^2 &= \mathrm{Span}_{\mathbb{Z}} \big\{ (1,0), (0,1) \big\} = \mathrm{Span}_{\mathbb{Z}} \big\{ (1,0), (3,1) \big\}. \end{split}$$

As in the proof of the classification of subgroups of finite free abelian groups, we have $\mathbb{Z}^2/H \cong \mathbb{Z}_{10} \times \mathbb{Z}_1 \cong \mathbb{Z}_{10}$ (as groups) and so $|\mathbb{Z}[i]/\langle 3+i\rangle| = |\mathbb{Z}_{10}| = 10$.

(c) Determine whether $\mathbb{Z}_5[i]/\langle 2+i\rangle \cong \mathbb{Z}_5$.

Solution: We claim that $\mathbb{Z}_5[i]/\langle 2+i\rangle \cong \mathbb{Z}_5$. Note that

$$\langle 2+i \rangle = \{ (2+i)(k+il) | k, l \in \mathbb{Z}_5 \} = \{ (2k+4l) + i(k+2l) | k, l \in \mathbb{Z}_5 \}$$

$$= \{ (2+i)(k+2l) | k, l \in \mathbb{Z}_5 \} = \{ (2+i)t | t \in \mathbb{Z}_5 \} = \{ a+ib | a=2b \}$$

$$= \{ 0, 2+i, 4+2i, 1+3i, 3+4i \}.$$

Define $\phi: \mathbb{Z}_5[i] \to \mathbb{Z}_5$ by $\phi(a+ib) = a+3b$. Then ϕ is a ring homomorphism since

$$\phi((a+ib)+(c+id)) = \phi((a+c)+i(b+d)) = (a+c)+3(b+d) = a+3b+c+3d = \phi(a+ib)+\phi(c+id)$$
$$\phi((a+ib)(c+id)) = \phi((ac-bd)+i(ad+bc)) = (ac+4bd)+3(ad+bc) = ac+3ad+3bc+9bd$$
$$= (a+3b)(c+3d) = \phi(a+ib)\phi(c+id).$$

Also, ϕ is clearly surjective and we have $\operatorname{Ker}(\phi) = \{a + ib | a + 3b = 0\} = \{a + ib | a = 2b\} = \langle 2 + i \rangle$. By the First Isomorphism Theorem, we have $\mathbb{Z}_5[i]/\langle 2 + i \rangle \cong \mathbb{Z}_5$.