- 1: (a) Let $H = \{(1), (12)(34), (13)(24), (14)(23)\} \leq S_4$. Show that $H \subseteq S_4$ and determine which of the two groups \mathbb{Z}_6 and S_3 is isomorphic to S_4/H .
 - (b) Let $H = \langle (2, -1), (2, 3) \rangle \leq \mathbb{Z}^2$. Show that $|\mathbb{Z}^2/H| = 8$, determine which of the three groups \mathbb{Z}_8 , $\mathbb{Z}_4 \times \mathbb{Z}_2$ or \mathbb{Z}_2^3 is isomorphic to \mathbb{Z}^2/H , and find a surjective group homomorphism ϕ from \mathbb{Z}^2 to one of these three groups with $\text{Ker}(\phi) = H$.
- **2:** (The Second Isomorphism Theorem) Let G be a group and let $H, K \leq G$.
 - (a) Show that $HK \leq G \iff HK = KH$.
 - (b) Show that if $K \triangleleft G$ then $K \cap H \triangleleft H$, $KH \triangleleft G$ and $K \triangleleft KH$.
 - (c) Show that if $K \subseteq G$ then $H/(K \cap H) \cong KH/K$.
 - (d) Show that (even if $K \not\supseteq G$) we have $|H||K| = |KH||K \cap H|$ (you may suppose that G is finite).
- 3: (a) (The Normalizer/Centralizer Theorem) Let G be a group and let $H \leq G$. Recall that the **centralizer** of H in G is the group $C(H) = C_G(H) = \{a \in G | ax = xa \text{ for all } x \in H\} \leq G$ and the **normalizer** of H in G is the group $N(H) = N_G(H) = \{a \in G | aH = Ha\} \leq G$. Show that $C(H) \subseteq N(H)$ and that N(H)/C(H) is isomorphic to a subgroup of Aut(H).
 - (b) (The Orbit/Stabilizer Theorem) Let A be a nonempty set and let G be a finite subgroup of Perm(A). For $a \in A$, the **orbit** of a is the set $Orb(a) = \{\sigma(a) \mid \sigma \in G\} \subseteq A$, and the **stabilizer** of a is the set $Orb(a) = \{\sigma(a) \mid \sigma \in G\} \subseteq A$, we have $Orbit(a) = \{\sigma(a) \mid \sigma(a) = a\}$. Show that for all $a \in A$, we have $Orbit(a) = \{\sigma(a) \mid \sigma(a) = a\}$.
- **4:** In this problem, when R is a ring and $X \subseteq R$, $\langle X \rangle$ denotes the ideal in R generated by X.
 - (a) Find the number of elements in $\mathbb{Z}^2/\langle (3,1)\rangle$.
 - (b) Find the number of elements in $\mathbb{Z}[i]/\langle 3+i\rangle$.
 - (c) Determine whether $\mathbb{Z}_5[i]/\langle 2+i\rangle \cong \mathbb{Z}_5$.