1: Show that no two of the groups \mathbb{Z}_{24} , U_{39} , D_{12} , S_4 and $SL(2,\mathbb{Z}_3)$ and are isomorphic.

Solution: In U_{39} we have $\langle 2 \rangle = \{1, 2, 4, 8, 16, 32, 25, 11, 22, 5, 10, 20\}$ so that in particular |25| = 2, and also we have 38 = -1 so |38| = 2. So in U_{39} there are at least 2 elements of order 2. Thus we cannot have $U_{39} \cong \mathbb{Z}_{24}$, since \mathbb{Z}_{24} has only one element of order 2.

The groups D_{12} and S_4 are not abelian, so neither can be isomorphic to \mathbb{Z}_{24} or to U_{39} . Also, D_{12} has 13 elements of order 2 (namely R_6 and the 12 reflections F_k) while S_4 has 9 elements of order 2 (6 of the form (ab) and 3 of the form (ab)(cd)) and so D_{12} is not isomorphic to S_4 .

It remains to show that $SL_2(\mathbb{Z}_3)$ is not isomorphic to any of the other groups. Note that $SL_2(\mathbb{Z}_3)$ is not abelian, since for example $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ does not commute with $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, and so $SL_2(\mathbb{Z}_3)$ cannot be isomorphic to \mathbb{Z}_{24} or to U_{39} . Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}_3)$. Since det A = 1 we have $A^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ and so

$$A^2 = I \iff A = A^{-1} \iff (a = d \text{ and } b = c = 0) \iff A = \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right) \text{ or } \left(\begin{smallmatrix} 2 & 0 \\ 0 & 2 \end{smallmatrix}\right).$$

Thus $SL_2(\mathbb{Z}_3)$ has only one element of order 2, namely $\binom{2\ 0}{0\ 2}$. Since D_{12} has 13 elements of order 2 and S_4 has 9 elements of order 2, $SL_2(\mathbb{Z}_3)$ cannot be isomorphic to either of these.

An alternate method is to find all 24 elements of $SL(2,\mathbb{Z}_3)$ and to find the order of each element. You should find 1 element of order 1, 1 of order 2, 8 of order 3, 6 of order 4 and 8 of order 6.

2: (a) Show that no two of the groups \mathbb{Q} , \mathbb{Q}^* and \mathbb{Q}^+ are isomorphic.

Solution: In \mathbb{Q}^* we have $(-1)^2 = 1$ so \mathbb{Q}^* has an element of order 2, but in \mathbb{Q} , \mathbb{Q}^+ and \mathbb{Q}^2 , all non-identity elements have infinite order. Thus \mathbb{Q}^* is not isomorphic to any of the groups \mathbb{Q} , \mathbb{Q}^+ or \mathbb{Q}^2 .

Note that \mathbb{Q}^+ cannot be isomorphic to either \mathbb{Q} or \mathbb{Q}^2 because the element $2 \in \mathbb{Q}^+$ has no square root but in \mathbb{Q} and \mathbb{Q}^2 every element can be halved (if $\phi : \mathbb{Q} \to \mathbb{Q}^+$ was an isomorphism with $\phi(x) = 2$ then we would have $\phi(\frac{x}{2})^2 = \phi(\frac{x}{2} + \frac{x}{2}) = \phi(x) = 2$).

(b) Determine whether, for all $n, m \in \mathbb{Z}^+$, the groups \mathbb{Q}^n and \mathbb{Q}^m are isomorphic if and only if n = m.

Solution: This is true: let $n, m \in \mathbb{Z}^+$. If n = m then $\mathbb{Q}^n = \mathbb{Q}^m$ so of course $\mathbb{Q}^n \cong \mathbb{Q}^m$. Suppose that $\mathbb{Q}^n \cong \mathbb{Q}^m$. Let $\phi : \mathbb{Q}^n \to \mathbb{Q}^m$ be a group isomorphism, meaning that ϕ is bijective wth $\phi(u+v) = \phi(u) + \phi(v)$ for all $u, v \in \mathbb{Q}^n$. Let $r \in \mathbb{Q}$ and $u \in \mathbb{Q}^n$, say $r = \frac{k}{\ell}$ with $k \in \mathbb{Z}$ and $\ell \in \mathbb{Z}^+$. Then

$$\phi(ru) = \phi\left(k \cdot \frac{1}{\ell}u\right) = k\phi\left(\frac{1}{\ell}u\right) = \frac{k}{\ell} \cdot \ell\phi\left(\frac{1}{\ell}u\right) = \frac{k}{\ell}\phi\left(\ell \cdot \frac{1}{\ell}u\right) = r\phi(u).$$

Thus $\phi: \mathbb{Q}^n \to \mathbb{Q}^m$ is a bijective linear map and hence, from linear algebra, $n = \dim(\mathbb{Q}^n) = \dim(\mathbb{Q}^m) = m$.

(c) Determine whether any two of the rings \mathbb{Q}^2 , $\mathbb{Q}[\sqrt{2}]$ and $\mathbb{Q}[\sqrt{3}]$ are isomorphic (as rings).

Solution: We claim that no two of these rings are isomorphic. First we show that $\mathbb{Q}^2 \not\cong \mathbb{Q}[\sqrt{2}]$. Suppose, for a contradiction, that $\phi: \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}^2$ is a ring isomorphism. Let $(r,s) = \phi(\sqrt{2})$ with $r,s \in \mathbb{Q}$. Then

$$(r^2,s^2) = (r,s)^2 = \phi(\sqrt{2})^2 = \phi\big((\sqrt{2}\,)^2\big) = \phi(2) = \phi(2\cdot 1) = 2\phi(1) = 2(1,1) = (2,2)$$

and this is not possible since there is no $r \in \mathbb{Q}$ with $r^2 = 2$. A similar argument shows that $\mathbb{Q}^2 \ncong \mathbb{Q}[\sqrt{3}]$ (because there is no $r \in \mathbb{Q}$ with $r^2 = 3$).

Finally we show that $\mathbb{Q}[\sqrt{2}] \not\cong \mathbb{Q}[\sqrt{3}]$. Suppose, for a contradiction, that $\phi : \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{3}]$ is a ring isomorphism. Say $\phi(\sqrt{2}) = r + s\sqrt{3}$ with $r, s \in \mathbb{Q}$. Then in $\mathbb{Q}[\sqrt{3}]$ we have

$$2 = 2 \cdot 1 = 2\phi(1) = \phi(2) = \phi\left((\sqrt{2})^2\right) = \left(\phi(\sqrt{2})\right)^2 = (r + s\sqrt{3})^2 = (r^2 + 3s^2) + 2\,rs\sqrt{3},$$

so that $r^2 + 3s^2 = 2$ and 2rs = 0. But 2rs = 0 implies that r = 0 or s = 0, so we cannot have $r^2 + 3s^2 = 2$.

3: (a) Find a subgroup of S_4 which is isomorphic to U_8 .

Solution: We have $U_8 = \{1, 3, 5, 7\}$, and its multiplication table is

Each row shows how left multiplication by the corresponding element of U_8 permutes the elements of U_8 , as in Cayley's theorem. If we associate the elements 1, 3, 5, 7 of U_8 with the elements 1, 2, 3, 4 of \mathbb{Z}_4 (in that order), the multiplication table corresponds to

Writing the permutations in each row in cycle notation, we have $U_8 \cong \{(1), (12)(34), (13)(24), (14)(23)\}.$

(b) Find a subgroup of S_4 which is isomorphic to $Aut(U_8)$.

Solution: Let $\phi \in \text{Aut}(U_8)$. Then $\phi(1) = 1$ and ϕ permutes the elements 3, 5, 7. Suppose, conversely, that $\phi \in \text{Perm}(U_8)$ with $\phi(1) = 1$. We consider $\phi(ab)$ in 3 cases. In the case that a = 1 or b = 1, say b = 1, we have $\phi(ab) = \phi(a \cdot 1) = \phi(a) = \phi(a) \cdot 1 = \phi(a)\phi(1)$. In the case that $a \neq 1$, $b \neq 1$ and a = b, we have $\phi(ab) = \phi(a^2) = \phi(1) = 1 = \phi(a)^2$, since $x^2 = 1$ for all x. Finally, in the case that 1, a, b are distinct, the multiplication table shows that ab = c where c is the other element of U_8 so that 1, a, b, c are distinct. Then $1 = \phi(1), \phi(a), \phi(b), \phi(c)$ are also distinct since ϕ is 1:1, and so $\phi(ab) = \phi(c) = \phi(a)\phi(b)$. In all 3 cases, we see that ϕ preserves the operation. Thus $\text{Aut}(U_8) = \{\phi \in \text{Perm}(U_8) | \phi(1) = 1\}$.

When we associate the elements $1,3,5,7 \in U_8$ with the elements $1,2,3,4 \in \mathbb{Z}_4$ (in that order), the automorphisms of U_8 correspond to the permutations of \mathbb{Z}_4 which fix 1 and permute 2,3,4. So we have $\operatorname{Aut}(U_8) \cong \{(1),(23),(24),(34),(234),(243)\}.$

(c) Show that $\operatorname{Aut}(\mathbb{Z}_n) \cong U_n$.

Solution: The group homomorphisms $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ are the maps ϕ_a given by $\phi_a(k) = ka$ where $a \in \mathbb{Z}_n$. Note that $\operatorname{Image}(\phi_a) = \langle a \rangle$, so

```
\phi_a is bijective \iff Image(\phi_a) = \mathbb{Z}_n \iff \langle a \rangle = \mathbb{Z}_n \iff |a| = n \iff \gcd(a, n) = 1 \iff a \in U_n.
```

Thus the map $\Phi: U_n \to \operatorname{Aut}(\mathbb{Z}_n)$ given by $\Phi(a) = \phi_a$ is a bijection. Finally, note that Φ is a group homomorphism since for $a, b \in \mathbb{Z}_n$ we have $(\phi_a \circ \phi_b)(k) = \phi_a(\phi_b(k)) = \phi_a(kb) = kba = kab = \phi_{ab}(k)$ and so $\Phi(ab) = \phi_{ab} = \phi_a \circ \phi_b = \Phi(a)\Phi(b)$.

4: (a) Find a formula for the number of group homomorphisms $\phi: \mathbb{Z}_n \to \mathbb{Z}_m$, where $n, m \in \mathbb{Z}^+$.

Solution: Recall that the group homomorphisms $\phi : \mathbb{Z}_n \to \mathbb{Z}_m$ are the maps ϕ_a where $a \in \mathbb{Z}_m$ with na = 0. Let us determine which elements $a \in \mathbb{Z}_m$ satisfy na = 0. Let $d = \gcd(n, m)$ and say n = sd and m = td. Then

$$na = 0 \in \mathbb{Z}_m \iff m | na \iff td | sda \iff t | sa \iff t | a \iff a \in \langle t \rangle.$$

Thus the number of distinct group homomorphisms is equal to $|\langle t \rangle| = d = \gcd(n, m)$.

(b) Find a formula for the number of group homomorphisms $\phi: \mathbb{Z}_n \times \mathbb{Z}_m \to \mathbb{Z}_\ell$, where $n, m, \ell \in \mathbb{Z}^+$.

Solution: Let $\phi: \mathbb{Z}_n \times \mathbb{Z}_m \to \mathbb{Z}_l$ be a group homomorphism. Note that if $\phi(1,0) = a$ and $\phi(0,1) = b$ then $\phi(s,t) = \phi(s(1,0)+t(0,1)) = s\phi(1,0)+t\phi(0,1) = sa+tb$, so ϕ is completely determined by the values $\phi(1,0)$ and $\phi(0,1)$. Also note that if $\phi(1,0) = a$ and $\phi(0,1) = b$ then we must have $na = \phi(n,0) = \phi(0,0) = 0$ and $mb = \phi(0,m) = \phi(0,0) = 0$. Given $a,b \in \mathbb{Z}_l$ with na = 0 and mb = 0, define $\phi_{a,b}: \mathbb{Z}_n \times \mathbb{Z}_m \to \mathbb{Z}_l$ by $\phi_{a,b}(s,t) = sa+tb$. Then $\phi_{a,b}$ is well-defined since if $s_1 = s_2 \mod n$ and $t_1 = t_2 \mod m$, say $s_1 = s_2 + nx$ and $t_1 = t_2 + my$, then in \mathbb{Z}_l we have $s_1a + t_1b = (s_2 + nx)a + (t_2 + my)b = s_2a + t_2b$ since na = mb = 0. Also, $\phi_{a,b}$ is a group homomorphism since $\phi_{a,b}((s_1,t_1)+(s_2,t_2)) = \phi_{a,b}(s_1+t_1,s_2+t_2) = (s_1+t_1)a + (s_2+t_2)b = s_1a + s_2b + t_1a + t_2b = \phi_{a,b}(s_1,s_2) + \phi_{a,b}(s_2,t_2)$. Thus the group homomorphisms $\phi: \mathbb{Z}_n \times \mathbb{Z}_m \to \mathbb{Z}_l$ are the maps $\phi_{a,b}$ where $a,b \in \mathbb{Z}_l$ with na = 0 and mb = 0. From our solution to part (a), the number of elements $a \in \mathbb{Z}_l$ with na = 0 is equal to $\gcd(n,l)$ and the number of elements $b \in \mathbb{Z}_l$ with mb = 0 is $\gcd(m,l)$, and so the number of group homomorphisms $\phi: \mathbb{Z}_n \times \mathbb{Z}_m \to \mathbb{Z}_l$ is equal to $\gcd(n,l) \gcd(m,l)$.

(c) For a positive integer n, let $\omega(n)$ denote the number of distinct prime factors of n. Find a formula (in terms of n and m, using ω) for the number of ring homomorphisms $\phi: \mathbb{Z}_n \to \mathbb{Z}_m$, where $n, m \in \mathbb{Z}^+$.

Solution: Recall that the ring homomorphisms $\phi: \mathbb{Z}_n \to \mathbb{Z}_m$ are the maps $\phi_a: \mathbb{Z}_n \to \mathbb{Z}_m$ given by $\phi_a(k) = ka$ where $a \in \mathbb{Z}_m$ with na = 0 and $a^2 = a$, so the number of such ring homomorphisms is equal to the number of $a \in \mathbb{Z}_m$ with na = 0 and $a^2 = a$. Let $m = \prod_{i=1}^{\ell} p_i^{k_i}$ where the p_i are distinct primes and each $k_i \in \mathbb{Z}^+$. Then we have $\mathbb{Z}_m \cong \prod_{i=1}^{\ell} \mathbb{Z}_{p_i^{k_i}}$, so the number of $a \in \mathbb{Z}_m$ with na = 0 and $a^2 = a$ is equal to the number of $(a_1, a_2, \dots, a_\ell) \in \prod_{i=1}^{\ell} \mathbb{Z}_{p_i^{k_i}}$ where each $a_i \in \mathbb{Z}_{p_i^{k_i}}$ with $na_i = 0$ and $a_i^2 = a_i$ in $\mathbb{Z}_{p_i^{k_i}}$. For $a_i \in \mathbb{Z}$ we have $a_i^2 = a_i$ in $\mathbb{Z}_{p_i^{k_i}} \iff p_i^{k_i} | (a_i^2 - a_i)$ in $\mathbb{Z} \iff (p_i^{k_i} | a_i \text{ or } p_i^{k_i} | (a_i - 1))$ in $\mathbb{Z} \iff (a_i = 0 \text{ or } a_i = 1)$ in $\mathbb{Z}_{p_i^{k_i}}$.

When $a_i = 0 \in \mathbb{Z}_{p_i^{k_i}}$ we have $na_i = 0 \in \mathbb{Z}_{p_i^{k_i}}$, and when $a_i = 1 \in \mathbb{Z}_{p_i^{k_i}}$ we have

$$na_i = 0 \text{ in } \mathbb{Z}_{p_i{}^{k_i}} \iff n = 0 \text{ in } \mathbb{Z}_{p_i{}^{k_i}} \iff p_i{}^{k_i} \big| n \text{ in } \mathbb{Z} \iff k_i = e_{p_i}(m) \leq e_{p_i}(n)$$

where $e_{p_i}(n)$ denotes the exponent of the prime p_i in the prime factorization of n. When $k_i = e_{p_i}(m) \le e_{p_i}(n)$ there are two choices for a_i , namely $a_i \in \{0,1\}$, and otherwise there is only one choice for a_i , namely $a_i = 0$. Thus the number of required elements $(a_1, a_2, \dots, a_\ell) \in \prod_{i=1}^{\ell} \mathbb{Z}_{p_i^{k_i}}$ is equal to 2 to the power of the number of indices i with $1 \le i \le \ell = \omega(m)$ for which $e_{p_i}(m) \le e_{p_i}(n)$, that is

$$2^{\omega(m)-\omega(m/\gcd(n,m))}$$