4.1 Note: We recall the following terminology. Let \(X \) and \(Y \) be sets. When we say that \(f \) is a function or a map from \(X \) to \(Y \), written \(f : X \to Y \), we mean that for every \(x \in X \) there exists a unique corresponding element \(y = f(x) \in Y \). The set \(X \) is called the domain of \(f \) and the range or image of \(f \) is the set \(\text{Image}(f) = f(X) = \{ f(x) \mid x \in X \} \). For a set \(A \subseteq X \), the image of \(A \) under \(f \) is the set \(f(A) = \{ f(a) \mid a \in A \} \) and for a set \(B \subseteq Y \), the inverse image of \(B \) under \(f \) is the set \(f^{-1}(B) = \{ x \in X \mid f(x) \in B \} \).

For a function \(f : X \to Y \), we say \(f \) is one-to-one (written 1:1) or injective when for every \(y \in Y \) there exists at most one \(x \in X \) such that \(y = f(x) \), we say \(f \) is onto or surjective when for every \(y \in Y \) there exists at least one \(x \in X \) such that \(y = f(x) \), and we say \(f \) is invertible or bijective when \(f \) is 1:1 and onto, that is for every \(y \in Y \) there exists a unique \(x \in X \) such that \(y = f(x) \). When \(f \) is invertible, the inverse of \(f \) is the function \(f^{-1} : Y \to X \) defined by \(f^{-1}(y) = x \iff y = f(x) \).

For \(f : X \to Y \) and \(g : Y \to Z \), the composite \(g \circ f : X \to Z \) is given by \((g \circ f)(x) = g(f(x)) \). Note that if \(f \) and \(g \) are both injective then so is the composite \(g \circ f \), and if \(f \) and \(g \) are both surjective then so is \(g \circ f \).

4.2 Definition: Let \(G \) and \(H \) be groups. A group homomorphism from \(G \) to \(H \) is a function \(\phi : G \to H \) such that
\[
\phi(ab) = \phi(a)\phi(b)
\]
for all \(a, b \in G \), or to be more precise, such that \(\phi(a \ast b) = \phi(a) \times \phi(b) \) for all \(a, b \in G \), where \(\ast \) is the operation on \(G \) and \(\times \) is the operation on \(H \). The kernel of \(\phi \) is the set
\[
\ker(\phi) = \phi^{-1}(e) = \{ a \in G \mid \phi(a) = e \}
\]
where \(e = e_H \) is the identity in \(H \), and the image (or range) of \(\phi \) is
\[
\text{Image}(\phi) = \phi(G) = \{ \phi(a) \mid a \in G \}.
\]
A group isomorphism from \(G \) to \(H \) is a bijective group homomorphism \(\phi : G \to H \). For two groups \(G \) and \(H \), we say that \(G \) and \(H \) are isomorphic and we write \(G \cong H \) when there exists an isomorphism \(\phi : G \to H \). An endomorphism of a group \(G \) is a homomorphism from \(G \) to itself. An automorphism of a group \(G \) is an isomorphism from \(G \) to itself. The set of all homomorphisms from \(G \) to \(H \), the set of all isomorphisms from \(G \) to \(H \), the set of all endomorphisms of \(G \), and the set of all automorphisms of \(G \) will be denoted by
\[
\text{Hom}(G,H), \text{Iso}(G,H), \text{End}(G), \text{Aut}(G).
\]

4.3 Remark: In algebra, we consider isomorphic groups to be (essentially) equivalent. The classification problem for finite groups is to determine, given any \(n \in \mathbb{Z}^+ \), the complete list of all groups, up to isomorphism, of order \(n \).
4.4 Example: The groups U_{12} and \mathbb{Z}_2^2 are isomorphic. One way to see this is to compare their operation tables.

$\begin{array}{cccc}
1 & 5 & 7 & 11 \\
1 & 1 & 5 & 7 \\
5 & 5 & 1 & 11 \\
7 & 7 & 11 & 1 \\
11 & 11 & 7 & 5
\end{array}$

$\begin{array}{cccccc}
(0,0) & (0,1) & (1,0) & (1,1) \\
(0,0) & (0,0) & (0,1) & (1,0) & (1,1) \\
(0,1) & (0,1) & (0,0) & (1,1) & (1,0) \\
(1,0) & (1,0) & (1,1) & (0,0) & (0,1) \\
(1,1) & (1,1) & (1,0) & (0,1) & (0,0)
\end{array}$

We see that all the entries in these tables correspond under the map $\phi: U_{12} \rightarrow \mathbb{Z}_2^2$ given by $\phi(1) = (0,0)$, $\phi(5) = (0,1)$, $\phi(7) = (1,0)$ and $\phi(1,1) = (1,1)$, so ϕ is an isomorphism.

4.5 Example: Let G be a group and let $a \in G$. Then the map $\phi_a: \mathbb{Z} \rightarrow G$ given by $\phi_a(k) = a^k$ is a group homomorphism since $\phi_a(k + \ell) = a^{k+\ell} = a^k a^\ell = \phi_a(k) \phi_a(\ell)$.

The image of ϕ_a is

$$\text{Image}(\phi_a) = \{a^k | k \in \mathbb{Z}\} = \langle a \rangle$$

and the kernel of ϕ_a is

$$\text{Ker}(\phi_a) = \{k \in \mathbb{Z} | a^k = e\} = \begin{cases} \langle n \rangle = n\mathbb{Z}, & \text{if } |a| = n, \\ \langle 0 \rangle = \{0\}, & \text{if } |a| = \infty. \end{cases}$$

4.6 Example: Let G be a group and let $a \in G$. If $|a| = \infty$ then the map $\phi_a: \mathbb{Z} \rightarrow \langle a \rangle$ given by $\phi_a(k) = a^k$ is an isomorphism, and if $|a| = n$ then the map $\phi_a: \mathbb{Z}_n \rightarrow \langle a \rangle$ given by $\phi_a(k) = a^k$ is an isomorphism (note that ϕ_a is well-defined because if $k = \ell \mod n$ then $a^k = a^\ell$ by Theorem 2.3). In each case, ϕ is a homomorphism since $a^{k+\ell} = a^k a^\ell$ and ϕ is bijective by Theorem 2.3.

4.7 Example: When R is a commutative ring with 1, the map $\phi : GL_n(R) \rightarrow R^*$ given by $\phi(A) = \det(A)$ is a group homomorphism since $\det(AB) = \det(A) \det(B)$. The kernel is

$$\text{Ker}(\phi) = \{A \in GL_n(R) | \det(A) = 1\} = SL_n(R)$$

and the image is

$$\text{Image}(\phi) = \{ \det(A) | A \in GL_n(R) \} = R^*$$

since for $a \in R^*$ we have $\det(\text{diag}(a,1,1,\cdots,1)) = a$.

4.8 Example: The map $\phi : \mathbb{R} \rightarrow \mathbb{R}^+$ given by $\phi(x) = e^x$ is a group isomorphism since it is bijective and $\phi(x + y) = e^{x+y} = e^x e^y = \phi(x) \phi(y)$.

4.9 Example: The map $\phi : SO_2(\mathbb{R}) \rightarrow S^1$ given by $\phi(R_\theta) = e^{i\theta}$ is a group isomorphism.
4.10 Theorem: Let G and H be groups and let $\phi : G \to H$ be a group homomorphism. Then

1. $\phi(e_G) = e_H$,
2. $\phi(a^{-1}) = \phi(a)^{-1}$ for all $a \in G$,
3. $\phi(a^k) = \phi(a)^k$ for all $a \in G$ and all $k \in \mathbb{Z}$, and
4. For $a \in G$, if $|a|$ is finite then $|\phi(a)|$ divides $|a|$.

Proof: To prove (1), note that $\phi(e_G) = \phi(e_G e_G) = \phi(e_G) \phi(e_G)$ so $\phi(e_G) = e_H$ by cancellation. To prove (2) note that $\phi(a) \phi(a^{-1}) = \phi(aa^{-1}) = \phi(e_G) = e_H$, so $\phi(a)^{-1} = \phi(a^{-1})$ by cancellation. For part (3), note first that $\phi(a^0) = \phi(a)^0$ by part (1), and then note that when $k \in \mathbb{Z}^+$ we have $\phi(a^k) = \phi(aa \cdots a) = \phi(a) \phi(a) \cdots \phi(a) = \phi(a)^k$ and hence also $\phi(a^{-k}) = \phi((a^{-1})^k) = \phi(a^{-1})^k = (\phi(a)^{-1})^k = \phi(a)^{-k}$. For part (4) note that if $|a| = n$ then we have $\phi(a)^n = \phi(a^n) = \phi(e_G) = e_H$ and so $|\phi(a)|$ divides n by Theorem 2.3.

4.11 Theorem: Let G, H and K be groups. Let $\phi : G \to H$ and $\psi : H \to K$ be group homomorphisms. Then

1. the identity $I : G \to G$ given by $I(x) = x$ for all $x \in G$, is an isomorphism,
2. the composite $\psi \circ \phi : G \to K$ is a group homomorphism, and
3. if $\phi : G \to H$ is an isomorphism then so is its inverse $\phi^{-1} : H \to G$.

Proof: We prove part (3) and leave the proofs of (1) and (2) as an exercise. Suppose that $\phi : G \to H$ is an isomorphism. Let $\psi = \phi^{-1} : H \to G$. We know that ψ is bijective, so we just need to show that ψ is a homomorphism. Let $c,d \in H$. Let $a = \phi(c)$ and $b = \psi(d)$. Since ϕ is a homomorphism we have $\phi(ab) = \phi(a) \phi(b)$, and so

$$\psi(cd) = \psi(\phi(a) \phi(b)) = \psi(\phi(ab)) = ab = \psi(c) \psi(d).$$

4.12 Corollary: Isomorphism is an equivalence relation on the class of groups. This means that for all groups G, H and K we have

1. $G \cong G$,
2. if $G \cong H$ and $H \cong K$ then $G \cong K$, and
3. if $G \cong H$ then $H \cong G$.

4.13 Corollary: For a group G, $\text{Aut}(G)$ is a group under composition.

4.14 Theorem: Let $\phi : G \to H$ be a homomorphism of groups. Then

1. if $K \leq G$ then $\phi(K) \leq H$, in particular $\text{Image}(\phi) \leq H$,
2. if $L \leq H$ then $\phi^{-1}(L) \leq G$, in particular $\text{Ker}(\phi) \leq G$.

Proof: The proof is left as an exercise.

4.15 Theorem: Let $\phi : G \to H$ be a homomorphism of groups. Then

1. ϕ is injective if and only if $\text{Ker}(\phi) = \{e\}$, and
2. ϕ is surjective if and only if $\text{Image}(\phi) = H$.

Proof: The proof is left as an exercise.
4.16 Theorem: Let $\phi : G \to H$ be an isomorphism of groups. Then

1. G is abelian if and only if H is abelian,
2. for $a \in G$ we have $|\phi(a)| = |a|$,
3. G is cyclic with $G = \langle a \rangle$ if and only if H is cyclic with $H = \langle \phi(a) \rangle$,
4. for $n \in \mathbb{Z}^+$ we have $\{ a \in G | |a| = n \} = \{ b \in H | |b| = n \}$,
5. for $K \leq G$ the restriction $\phi : K \to \phi(K)$ is an isomorphism of groups, and
6. for any group C we have $\{ K \leq G | K \cong C \} = \{ L \leq H | L \cong C \}$.

Proof: The proof is left as an exercise.

4.17 Example: Note that $\mathbb{Q}^* \ncong \mathbb{R}^*$ since $|\mathbb{Q}^*| \neq |\mathbb{R}^*|$. Similarly, $GL_3(\mathbb{Z}_2) \ncong S_5$ because $|GL_3(\mathbb{Z}_2)| = 168$ but $|S_5| = 120$.

4.18 Example: $\mathbb{C}^* \ncong GL_2(\mathbb{R})$ since \mathbb{C}^* is abelian but $GL_n(\mathbb{R})$ is not. Similarly, $S_4 \ncong U_{35}$ because U_{35} is abelian but S_4 is not.

4.19 Example: $\mathbb{R}^* \ncong \mathbb{C}^*$ since \mathbb{C}^* has elements of order $n \geq 3$, for example $|i| = 4$ in \mathbb{C}^*, but \mathbb{R}^* has no elements of order $n \geq 3$, indeed in \mathbb{R}^*, $|1| = 1$ and $|-1| = 2$ and for $x \neq \pm 1$ we have $|x| = \infty$.

4.20 Example: Determine whether $U_{35} \cong \mathbb{Z}_{24}$.

Solution: In U_{35} we have

\[
\begin{array}{cccccccccccc}
 k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
2^k & 1 & 2 & 4 & 8 & 16 & 32 & 29 & 23 & 11 & 22 & 9 & 18 & 1
\end{array}
\]

We notice that U_{35} has at least two elements of order 2, namely 29 and 34, but \mathbb{Z}_{24} has only one element of order 2, namely 12. Thus $U_{35} \ncong \mathbb{Z}_{24}$.

4.21 Theorem: Let $a, b \in \mathbb{Z}^+$ with $\gcd(a, b) = 1$. Then

1. $\mathbb{Z}_{ab} \cong \mathbb{Z}_a \times \mathbb{Z}_b$ and
2. $U_{ab} \cong U_a \times U_b$.

Proof: We prove part (2) (the proof of part (1) is similar). Define $\phi : U_{ab} \to U_a \times U_b$ by $\phi(k) = (k, k)$. This map ϕ is well-defined because if $k = \ell \mod ab$ then $k = \ell \mod a$ and $k = \ell \mod b$ and because if $\gcd(k, ab) = 1$ so that $k \in U_{ab}$ then $\gcd(k, a) = \gcd(k, b) = 1$. Also, ϕ is a group homomorphism since $\phi(k\ell) = (k\ell, k\ell) = (k, k)(\ell, \ell) = \phi(k)\phi(\ell)$. Finally note that ϕ is bijective by the Chinese Remainder Theorem, indeed ϕ is onto because given $k \in U_a$ and $\ell \in U_b$ there exists $x \in \mathbb{Z}$ with $x = k \mod a$ and $x = \ell \mod b$ and we then have $\gcd(x, a) = \gcd(k, a) = 1$ and $\gcd(x, b) = \gcd(\ell, b) = 1$ so that $\gcd(x, ab) = 1$, that is $x \in U_{ab}$, and ϕ is 1:1 because this solution x is unique modulo ab.

4.22 Corollary: If $n = \prod_{i=1}^{\ell} p_i^{k_i}$ where the p_i are distinct primes and each $k_i \in \mathbb{Z}^+$ then

\[
\phi(n) = \prod_{i=1}^{\ell} (p_i^{k_i} - p_i^{k_i - 1}) = n \cdot \prod_{i=1}^{\ell} \left(1 - \frac{1}{p_i}\right).
\]
4.23 Definition: Let G be a group. For $a \in G$, we define **left multiplication** by a to be the map $L_a : G \to G$ given by

$$L_a(x) = ax \text{ for } x \in G.$$

Note that $L_e = I$ (since $L_e(x) = ex = x = I(x)$ for all $x \in G$) and $L_aL_b = L_{ab}$ since $L_a(L_b(x)) = L_a(br) = abx = L_{ab}(x)$ for all $x \in G$. Similarly, we define **right-multiplication** by a to be the map $R_a : G \to G$ given by $R_a(x) = ax$ for $x \in G$. Also, we define **conjugation** by a to be the map $C_a : G \to G$ by

$$C_a(x) = axa^{-1} \text{ for } x \in G.$$

The map $L_a : G \to G$ is not necessarily a group homomorphism since $L_a(xy) = a(xy)$ while $L_a(x)L_a(y) = axay$. On the other hand, the map $C_a : G \to G$ is a group homomorphism because $C_a(xy) = axya^{-1} = axa^{-1}aya^{-1} = C_a(x)C_a(y)$. Indeed C_a is an automorphism of G because it is invertible with $C_a^{-1} = C_{a^{-1}}$. An automorphism of G of the form C_a is called an **inner automorphism** of G. The set of all inner automorphisms of G is denoted by Inn(G), so we have

$$\text{Inn}(G) = \{C_a | a \in G\}.$$

Note that $\text{Inn}(G) \leq \text{Aut}(G)$ because $I = C_e$, $C_aC_b = C_{ab}$ and $C_a^{-1} = C_{a^{-1}}$. Note that when $H \leq G$, the restriction of the conjugation map C_a gives an isomorphism from H to the group

$$C_a(H) = aHa^{-1} = \{aha^{-1} | h \in H\} \cong H.$$

The isomorphic groups H and $C_a(H) = aHa^{-1}$ are called **conjugate** subgroups of G.

4.24 Example: As an exercise, find $\text{Inn}(D_4)$ and show that $\text{Inn}(D_4) \neq \text{Aut}(D_4)$.

4.25 Example: Let G be a finite set with $|G| = n$. Let $S = \{1, 2, \cdots, n\}$ and let $f : G \to S$ be a bijection. The map $C_f : \text{Perm}(G) \to S_n$ given by $C_f(g) = fgf^{-1}$ is a group isomorphism. Indeed, C_f is well-defined since when $g \in \text{Perm}(G)$ the map fgf^{-1} is invertible with $(fgf^{-1})^{-1} = fg^{-1}f^{-1}$, and C_f is a group homomorphism since $C_f(gh) = fghf^{-1} = fgf^{-1}fhf^{-1} = C_f(g)C_f(h)$, and C_f is bijective with inverse $C_{f^{-1}} = C_{f^{-1}}$.

4.26 Theorem: (Cayley’s Theorem) Let G be a group.

1. G is isomorphic to a subgroup of $\text{Perm}(G)$.
2. If $|G| = n$ then G is isomorphic to a subgroup of S_n.

Proof: Define $\phi : G \to \text{Perm}(G)$ by $\phi(a) = L_a$. Note that $L_a \in \text{Perm}(G)$ because L_a is invertible with inverse $L_a^{-1} = L_{a^{-1}}$. Also, ϕ is a group homomorphism because $\phi(ab) = L_{ab} = L_aL_b$ and ϕ is injective because $L_a = I \implies a = e$ (indeed if $L_a = I$ then $a = ae = L_a(e) = I(e) = e$). Thus ϕ is an isomorphism from G to $\phi(G)$, which is a subgroup of $\text{Perm}(G)$.

Now suppose that $|G| = n$, say $f : G \to \{1, 2, \cdots, n\}$ is a bijection. Then the map $C_f \circ \phi$ is an injective group homomorphism (where $C_f(g) = fgf^{-1}$, as above), and so G is isomorphic to $C_f(\phi(G))$ which is a subgroup of S_n.

19
4.27 Example: Show that $\text{Hom}(\mathbb{Z}, G) = \{ \phi_a | a \in G \}$, where $\phi_a(k) = a^k$.

Solution: Let $\phi \in \text{Hom}(\mathbb{Z}, G)$. Let $a = \phi(1)$. Then for all $k \in \mathbb{Z}$ we have $\phi(k) = \phi(k \cdot 1) = \phi(1)^k = a^k$, and so $\phi = \phi_a$. On the other hand, note that for $a \in G$ the map ϕ_a given by $\phi_a(k) = a^k$ is a group homomorphism because $\phi_a(k + l) = a^{k+l} = a^ka^l = \phi_a(k)\phi_a(l)$.

4.28 Example: Show that $\text{Hom}(\mathbb{Z}_n, G) = \{ \phi_a | a \in G, a^n = e \}$, where $\phi_a(k) = a^k$.

Solution: Let $\phi \in \text{Hom}(\mathbb{Z}_n, G)$. Let $a = \phi(1)$. Then for all $k \in \mathbb{Z}$ we have $\phi(k) = \phi(k \cdot 1) = \phi(1)^k = a^k$ so that $\phi = \phi_a$, and we have $a^n = \phi(n) = \phi(0) = e$. On the other hand, note that for $a \in G$ with $a^n = e$, the map ϕ_a is well-defined because if $k = l \mod n$ the $a^k = a^l$ and it is a homomorphism because $a^{k+l} = a^ka^l$.

4.29 Example: As an exercise, describe $\text{Hom}(\mathbb{Z}_n \times \mathbb{Z}_m, G)$.

4.30 Example: As an exercise, describe $\text{Hom}(D_n, G)$.