PMATH 336 Intro to Group Theory, Solutions to Assignment 7

In this assignment, T_u denotes the translation by the vector u, $R_{p,\theta}$ denotes the rotation about the point p by the angle θ , F_L denotes the reflection in the line L and $G_{u,L}$ denotes the glide reflection $G_{u,L} = T_u F_L = F_L T_u$ where u is parallel to L.

1: (a) Let a=(2,1), b=(3,3) and c=(-1,5). Find the image of the triangle with vertices at a,b and c under the isometry $G_{(-4,4),x+y=3}F_{x-3y=4}R_{(5,2),\frac{\pi}{2}}$.

Solution: Using a picture, or using algebraic formulas for the isometries, we have

$$G_{(-4,4),x+y=3}F_{x-3y=4}R_{(5,2),\frac{\pi}{2}}(2,1) = G_{(-4,4),x+y=3}F_{x-3y=4}(6,-1) = G_{(-4,4),x+y=3}(5,2) = (-3,2)$$

$$G_{(-4,4),x+y=3}F_{x-3y=4}R_{(5,2),\frac{\pi}{2}}(3,3) = G_{(-4,4),x+y=3}F_{x-3y=4}(4,0) = G_{(-4,4),x+y=3}(4,0) = (-1,3)$$

$$G_{(-4,4),x+y=3}F_{x-3y=4}R_{(5,2),\frac{\pi}{2}}(-1,5) = G_{(-4,4),x+y=3}F_{x-3y=4}(2,-4) = G_{(-4,4),x+y=3}(0,2) = (-3,7)$$

So the image of triangle abc is the triangle with vertices at (-3, 2), -1, 3 and (-3, 7).

(b) Let L be the line 2x - 3y = 1. Find the equation of the line M such that $F_M F_L = T_{(-2,3)}$.

Solution: The line M is the line obtained by translating the line L by $\frac{1}{2}(-2,3) = \left(-1,\frac{3}{2}\right)$. The line L passes through the point (2,1) so the line M passes through the point $(2,1) + \left(-1 + \frac{3}{2}\right) = \left(1,\frac{5}{2}\right)$. Thus M is the line through $\left(1,\frac{5}{2}\right)$ parallel to L, so M has equation 4x - 6y + 11 = 0.

(c) Let L be the line 2x - 3y = 1. Find the equation of the line N such that $F_N F_L = R_{(2,1),90^{\circ}}$.

Solution: The line N is the line obtain by revolving the line L by 45° about the point (2,1). Notice that the points (2,1), (5,3), (3,6) and (0,4) form a square, so the line N is the diagonal which passes through (2,1) and (3,6). Thus N is the line y = 5x - 9.

2: (a) Express the isometry $R_{(4,4),90^{\circ}}F_{x+3y=6}$ as a glide reflection.

Solution: Let $S = R_{(4,4),90^{\circ}} F_{x+3y=6}$. Choose a = (0,2) and b = (3,1) (we could have chosen any two points a and b). We have

$$S(a) = R_{(4,4),90^{\circ}} F_{x+3y=6}(0,2) = R_{(4,4),90^{\circ}}(0,2) = (6,0),$$

$$S(b) = R_{(4,4),90^{\circ}} F_{x+3y=6}(3,1) = R_{(4,4),90^{\circ}}(3,1) = (7,3).$$

The midpoint of a and S(a) is (3,1) and the midpoint of b and S(b) is (5,2). The reflection line L passes through these two midpoints, so L is the line x-2y=1. The translation vector is the vector $u=S(a)-F_L(a)=(6,0)-(2,-2)=(4,2)$. Thus $S=G_{(4,2),x-2y=1}$.

(b) Express the isometry $F_{y=3x}T_{(-2,3)}G_{(2,1),x+2=2y}$ as a single rotation.

Solution: Let $S = F_{y=3x}T_{(-2,3)}G_{(2,1),x+2=2y}$. Choose a = (0,1) and b = (2,2). We have

$$S(a) = F_{y=3x} T_{(-2,3)} G_{(2,1),x+2=2y}(0,1) = F_{y=3x} T_{(-2,3)}(2,2) = F_{y=3x}(0,5) = (3,4),$$

$$S(b) = F_{y=3x} T_{(-2,3)} G_{(2,1),x+2=2y}(2,2) = F_{y=3x} T_{(-2,3)}(4,3) = F_{y=3x}(2,6) = (2,6).$$

The rotation point p is equidistant from a and S(a) so it lies on the perpendicular bisector of a and S(a). Similarly, it lies on the perpendicular bisector of b and S(b). The perpendicular bisector of a and S(a) is the line x + y = 4, and the perpendicular bisector of b and S(b) is the line y = 4. The rotation point is the point of intersection of these two lines, which is the point p = (0,4). The rotation angle θ is the angle from the vector b - a = (2,1) to the vector S(b) - S(a) = (-1,2), that is $\theta = 90^{\circ}$. Thus $S = R_{(0,4),90^{\circ}}$.

3: (a) Find a set $X \subset \mathbb{R}^2$ with |X| = 4 such that $\mathrm{Sym}(X) = \{I, F_{x+2y=5}\}.$

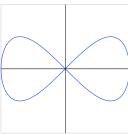
Solution: One such set X is $X = \{(0,0), (1,2), (2,4), (5,0)\}$. Another is $X = \{(-3,4), (1,2), (3,1), (5,0)\}$.

(b) Find a set $Y \subset \mathbb{R}^2$ with |Y| = 4 such that $\operatorname{Sym}(Y) = \{I, R_{(1,2),\pi}\}.$

Solution: One such set is $Y = \{(0,1), (0,2), (2,2), (2,3)\}.$

(c) Find Sym(Z), where $Z = \{(x, y) \in \mathbb{R}^2 | y^2 = x^2 - x^4 \}$.

Solution: We draw a picture of the set Z.



From the picture we see that $Sym(Z) = D_2 = \{I, R_{0,\pi}, F_{x=0}, F_{y=0}\}$.

(d) Let $X = \{(x, y, z) \in \mathbb{R}^3 | xyz = 0\}$ and let G be the rotation group of X. Determine whether the rotation group of X is isomorphic to \mathbb{Z}_n , D_n , A_4 , A_5 or to S_4 .

Solution: The rotation group G permutes the 6 points $(\pm 1, 0, 0)$, $(0, \pm 1, 0)$, $(0, 0, \pm 1)$. Let x = (1, 0, 0). Then $|\operatorname{Orb}(x)| = 6$ and $|\operatorname{Stab}(x)| = 4$ and so |G| = 24. Thus G must be isomorphic to \mathbb{Z}_{24} , D_{12} or S_4 . Since G includes the rotations by $\pm 90^{\circ}$ about each of the 3 coordinate axes, so G has at least 6 elements of order 4 (unlike \mathbb{Z}_{24} and D_{12} which each have only 2 elements of order 4), and so we must have $G \cong S_4$.

4: (a) How many 8-bead necklaces (up to D_8 symmetry) can be made using 4 colours?

Solution: Let X be the set of all possible colourings, without considering the D_8 symmetry, so $|X| = 4^8$. Consider D_8 as a subgroup of Perm(X). We make a table showing the value of |Fix(A)| for each $A \in D_8$.

A	# of such A	$ \operatorname{Fix}(A) $
I	1	4^{8}
R_4	1	4^{4}
R_2, R_6	2	4^{2}
$R_1, R_3, R_5.R_7$	4	4^1
F_0, F_2, F_4, F_6	4	4^{5}
F_1, F_3, F_5, F_7	4	4^4

So the number of colourings, up to the D_8 symmetry, is equal to the number of orbits which is equal to

$$\frac{1}{16} \left(1 \cdot 4^8 + 1 \cdot 4^4 + 2 \cdot 4^2 + 4 \cdot 4^1 + 4 \cdot 4^5 + 4 \cdot 4^4 \right) = 4435 \,.$$

(b) How many ways (up to rotational symmetry) can the faces of a regular octahedron be coloured using 4 colours?

Solution: Let G be the rotation group of the regular octahedron. If we consider G as a subgroup of the permutations of the faces, which we label by $1, 2, \dots 8$, then $|\operatorname{Orb}(1)| = 8$ and $|\operatorname{Stab}(1)| = 3$ and so we have |G| = 24. Now, let X be the set of all colourings, without considering the symmetry, so that $|X| = 4^8$, and consider G as a subgroup of $\operatorname{Perm}(X)$. We make a table showing $|\operatorname{Fix}(A)|$ for each $A \in G$.

A	#	Fix	c(A)
the identity	1	4^{8}	
rotation by $\pm 120^{\circ}$ about an axis through a pair of opposite faces	8	4^4	(2 groups of 3, 2 groups of 1)
rotation by 180° about an axis through a pair of opposite edges	6	4^4	(4 groups of 2)
rotation by $\pm 90^{\circ}$ about an axis through a pair of opposite vertices	6	4^{2}	(2 groups of 4)
rotation by 180° about an axis through a pair of opposite vertices	3	4^4	(4 groups of 4)

So the number of colourings, up to the rotational symmetry, is equal to the number of orbits which is

$$\tfrac{1}{24} \big(1 \cdot 4^8 + 8 \cdot 4^4 + 6 \cdot 4^4 + 6 \cdot 4^2 + 3 \cdot 4^4 \big) = 2916.$$