In this assignment, T_u denotes the translation by the vector u, $R_{p,\theta}$ denotes the rotation about the point p by the angle θ , F_L denotes the reflection in the line L and $G_{u,L}$ denotes the glide reflection $G_{u,L} = T_u F_L = F_L T_u$ where u is parallel to L.

- 1: (a) Let a = (1, 8), b = (2, 1) and c = (3, 4). Find the image of the triangle abc under $G_{(-2, -6), y=3x-8}R_{(3, 8), 90^{\circ}}$.
 - (b) Let L be the line 2x 3y = 1. Find the equation of the line M such that $F_M F_L = T_{(-2,3)}$.
 - (c) Let L be the line 2x 3y = 1. Find the equation of the line N such that $F_N F_L = R_{(2,1),90^{\circ}}$.
- **2:** (a) Express the isometry $R_{(4,4),90} \, F_{x+3y=6}$ as a glide reflection.
 - (b) Express the isometry $F_{y=3x}T_{(-2,3)}G_{(2,1),x+2=2y}$ as a single rotation.
- **3:** (a) Find a set $X \subset \mathbb{R}^2$ with |X| = 4 such that $\operatorname{Sym}(X) = \{I, F_{x+2y=5}\}$.
 - (b) Find a set $Y \subset \mathbb{R}^2$ with |Y| = 4 such that $\operatorname{Sym}(Y) = \{I, R_{(1,2),\pi}\}.$
 - (c) Find Sym(Z), where $Z = \{(x, y) \in \mathbb{R}^2 | y^2 = x^2 x^4 \}$.
 - (d) Let $X = \{(x, y, z) \in \mathbb{R}^3 | xyz = 0\}$ and let G be the rotation group of X. Determine whether the rotation group of X is isomorphic to \mathbb{Z}_n , D_n , A_4 , A_5 or to S_4 .
- 4: (a) How many 9-bead necklaces (up to D_9 symmetry) can be made using 3 colours?
 - (b) How many ways (up to rotational symmetry) can the 12 vertices of a regular icosahedron be coloured using 2 colours?