1: Let
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ and $C = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, and let $Q_8 = \langle A, B \rangle \leq GL_2(\mathbb{C})$.

(a) Show that $Q_8 = \{I, A, B, C, -I, -A, -B, -C\}$ and make the multiplication table for Q_8 .

Solution: Let $S = \{I, A, B, C, -I, -A, -B, -C\}$. Note that $A^2 = -I$ and AB = C so we have

$$I = A^0 \; , \; A = A^1 \; , \; B = B^1 \; , \; C = AB \; , \; -I = A^2 \; , \; -A = A^3 \; , \; -B = A^2 B \; \text{and} \; -C = A^2 C = A^3 B \; .$$

which all lie in $\langle A, B \rangle$. Thus we have $S \subseteq \langle A, B \rangle$. Here is the multiplication table for S:

The table shows that the set S is closed under multiplication and that each element in S has an inverse in S, and hence $S \leq GL_2(\mathbb{C})$. Since $S \leq GL_2(\mathbb{C})$ and $\{A, B\} \subseteq S$ we have $\langle A, B \rangle \subseteq S$ by the definition of $\langle A, B \rangle$.

(b) Find the number of elements of each order in Q_8 .

Solution: With the help of the multiplication table, we make a table of powers, and we list the order of each element on the last row.

We see that Q_8 has 1 element of order 1, 1 element of order 2, and 6 elements of order 4.

(c) Find an abelian group which has the same number of elements of each order as $\mathbb{Z}_2 \times Q_8$.

Solution: In $\mathbb{Z}_2 \times Q_8$ we have

and in $\mathbb{Z}_4 \times \mathbb{Z}_4$ we have

Thus the groups $\mathbb{Z}_2 \times Q_8$ and $\mathbb{Z}_4 \times \mathbb{Z}_4$ have the same number of elements of each order.

2: For each of the following groups G, find a group of the form $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_\ell}$ with $n_k | n_{k+1}$ for $1 \leq k < \ell$ which is isomorphic to G.

(a)
$$G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_{25} \times \mathbb{Z}_{25} \times \mathbb{Z}_7$$

Solution: $G \cong (\mathbb{Z}_2 \times \mathbb{Z}_5) \times (\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_{25}) \times (\mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_{25} \times \mathbb{Z}_7) \cong \mathbb{Z}_{10} \times \mathbb{Z}_{150} \times \mathbb{Z}_{2100}$.

(b)
$$G = U_{450}$$

Solution: The powers of 2 modulo 9 are $(2^k)_{k\geq 0} = (1, 2, 4, 8, 7, 5, 1, \cdots)$ so that we have $U(9) = \langle 2 \rangle \cong \mathbb{Z}^6$ and the powers of 2 modulo 25 are $(2^k)_{k\geq 0} = (1, 2, 4, 8, 16, 7, 14, 3, 6, 12, 24, 21, 17, 9, 18, 22, 19, 13, 1, \cdots)$ so that $U_{25} = \langle 2 \rangle \cong \mathbb{Z}_{20}$. Thus

$$U_{450} \cong U_2 \times U_9 \times U_{25} \cong \mathbb{Z}_1 \times \mathbb{Z}_6 \times \mathbb{Z}_{20} \cong \mathbb{Z}_6 \times \mathbb{Z}_{20} \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_5 \cong \mathbb{Z}_2 \times \mathbb{Z}_{60}.$$

(c)
$$G = U_{100}/\langle 49 \rangle$$

Solution: Let $G = U(100)/\langle 49 \rangle$. We have $U(100) \cong U(4) \times U(25) \cong \mathbb{Z}_2 \times \mathbb{Z}_{20}$, so |U(100)| = 40, and $\langle 49 \rangle = \{1,49\}$ so |G| = 20. So we must have $G \cong \mathbb{Z}_{20}$ or $G \cong \mathbb{Z}_2 \times \mathbb{Z}_{10}$, since these are the only two abelian groups of order 20. The powers of 3 mod 100 are $(3^k)_{k\geq 0} = (1,3,9,27,81,43,29,87,61,83,49,\ldots)$, so $3^{10} \in \langle 49 \rangle$ and $|3\langle 49 \rangle| = 10$ in G. Also $3^5 = 43$ and $|43\langle 49 \rangle| = 2$ in G. Notice that we also have $|7\langle 49 \rangle| = 2$, so G contains at least 2 elements of order 2. Since \mathbb{Z}_{20} only has 1 element of order 2, $G \cong \mathbb{Z}_2 \times \mathbb{Z}_{10}$.

(d)
$$G = \mathbb{Z}^2/H$$
 where $H = \operatorname{Span}_{\mathbb{Z}}\{(2, -2), (4, 2)\}.$

Solution: Using a picture, and some geometric intuition, we can solve this problem as follows. The distinct cosets are given by (a,b)+H where the points (a,b) lie inside, and on the left edges of the parallelogram with vertices at (0,0), (2,-2), (4,2) and (6,0). There are 9 points (a,b) inside, namely (2,-1), (3,-1), (1,0), (2,0), (3,0), (4,0), (5,0), (3,1) and (4,1), and 3 points on the edges, namely (0,0), (1,-1) and (2,1). Thus we have |G| = 9 + 3 = 12. Also, with the help of a picture, it is easy to see that the cosets (2,1) + H, (3,0)+H and (1,-1)+H all have order 2. Since \mathbb{Z}_{12} only has 1 element of order 2 we must have $G \cong \mathbb{Z}_2 \times \mathbb{Z}_6$.

Here is a more formal solution. Since (4,2)-2(2,-2)=(0,6), we have $H=\operatorname{Span}\{(2,-2),(0,6)\}$. Notice that for u=(1,-1) and v=(0,1), the set $\{u,v\}$ is a basis for \mathbb{Z}^2 and the set $\{2u,6v\}$ is a basis for H (as in Theorem 6.7). Define $\phi:\mathbb{Z}^2\to\mathbb{Z}_2\times\mathbb{Z}_6$ by $\phi(k(1,-1)+l(0,1))=(k,l)$ that is $\phi(k,l-k)=(k,l)$, or equivalently by $\phi(x,y)=(x,x+y)$. This map ϕ is clearly a surjective group homomorphism. We claim that $\operatorname{Ker}(\phi)=H$. We have $\phi(2,-2)=(2,0)=(0,0)$ and $\phi(0,6)=(0,6)=(0,0)$ and so $H\leq\operatorname{Ker}(\phi)$. Conversely, let $(x,y)\in\operatorname{Ker}(\phi)$. Then $\phi(x,y)=(0,0)\in\mathbb{Z}_2\times\mathbb{Z}_6$, so we have $(x,x+y)=(0,0)\in\mathbb{Z}_2\times\mathbb{Z}_6$. Since $x=0\in\mathbb{Z}_2$ we can write x=2s for some $s\in\mathbb{Z}$. Since $x+y=0\in\mathbb{Z}_6$ we have y=-x=-2s mod 6 so we can write y=-2s+6t for some $t\in\mathbb{Z}$. Then we have $(x,y)=(2t,-2s+6t)=s(2,-2)+t(0,6)\in\operatorname{Span}\{(2,-2),(0,6)\}=H$. This shows that $\operatorname{Ker}(\phi)\leq H$ and so we have $\operatorname{Ker}(\phi)=H$ as claimed. Since $\phi:\mathbb{Z}^2\to\mathbb{Z}_2\times\mathbb{Z}_6$ is a surjective homomorphism with $\operatorname{Ker}(\phi)=H$ we have $\mathbb{Z}^2/H\cong\mathbb{Z}_2\times\mathbb{Z}_6$ by the First Isomorphism Theorem.

3: (a) List all the abelian groups (up to isomorphism) of order 1200.

Solution: The abelian groups of order 1200 are

(b) Determine the number of abelian groups of order 3,200,000.

(c) List every abelian group of order 12,000 which has exactly 7 elements of order 2.

Solution: We have $12,000 = 2^5 \cdot 3^1 \cdot 5^3$ so the abelian groups of order 12,000 are the groups of the form $H \times \mathbb{Z}_3 \times K$ where H and K are abelian groups with $|H| = 2^5 = 32$ and $|K| = 5^3 = 125$. The partitions of 3 are (1,1,1), (1,2) and (1,3) and so the we must have $K = \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_5$, $\mathbb{Z}_5 \times \mathbb{Z}_2$ or \mathbb{Z}_{125} . Note the number of elements in G of order 2 is equal to the number of elements in H of order 2, and the number of elements of order 2 in the group $H = \mathbb{Z}_{2^{k_1}} \times \mathbb{Z}_{2^{k_2}} \times \cdots \times \mathbb{Z}_{p^{k_l}}$ is equal to $2^l - 1$ (namely the elements $(a_1, a_2, \dots, a_l) \neq (e, e, \dots, e)$ where for each i, either $a_i = e$ or a_i is the element in \mathbb{Z}_{p^i} of order 2). Since H has 7 elements of order 2 we must have l = 3. The partitions of 5 into 3 parts are (1, 2, 2) and (1, 1, 3) so we must have $H = \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_4$ or $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_8$. Thus the abelian groups of order 12,000 with exactly 7 elements of order 2 are as follows

$$\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}
\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{25}
\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{125}
\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}
\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{25}
\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{125}$$

4: For a matrix $A \in M_{n \times n}(\mathbb{Z})$, an elementary row operation is a row operation of one of the three forms $R_k \leftrightarrow R_\ell$, $R_k \mapsto \pm R_k$ or $R_k \mapsto R_k + t R_\ell$ with $t \in \mathbb{Z}$, and an elementary column operation is a column operation of similar form.

$$\text{Let } G = \mathbb{Z}^2 = \left\{ \left(\begin{smallmatrix} x \\ y \end{smallmatrix} \right) \, \middle| \, x,y \in \mathbb{Z} \right\}, \, \text{let } H = \text{Span}_{\mathbb{Z}} \left\{ \left(\begin{smallmatrix} 48 \\ 66 \end{smallmatrix} \right), \left(\begin{smallmatrix} 70 \\ 98 \end{smallmatrix} \right) \right\} \leq G, \, \text{and let } A = \left(\begin{smallmatrix} 48 & 70 \\ 66 & 98 \end{smallmatrix} \right) \in M_2(\mathbb{Z}).$$

(a) Perform elementary row operations on A to convert it into a matrix $B = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ with $a = \gcd(48, 66)$. Solution: We perform elementary row operations as follows:

$$\begin{pmatrix} 48 & 70 \\ 66 & 98 \end{pmatrix} R2 \mapsto R_2 - R_1 \begin{pmatrix} 48 & 70 \\ 18 & 28 \end{pmatrix} R_1 \mapsto R_1 - 2R_2 \begin{pmatrix} 12 & 14 \\ 18 & 28 \end{pmatrix} R_2 \mapsto R_2 - R_1 \begin{pmatrix} 12 & 14 \\ 6 & 14 \end{pmatrix}$$
$$R_1 \mapsto R_1 - 2R_2 \begin{pmatrix} 0 & -14 \\ 6 & 14 \end{pmatrix} R_1 \leftrightarrow R_2 \begin{pmatrix} 6 & 14 \\ 0 & -14 \end{pmatrix}$$

(b) Perform elementary column operations on B to convert it to the form $C = \begin{pmatrix} k & 0 \\ \ell & m \end{pmatrix}$ with $k = \gcd(a, b)$. Solution: We perform column operations as follows

$$\begin{pmatrix} 6 & 14 \\ 0 & -14 \end{pmatrix} \ C_2 \mapsto C_2 - 2C_1 \ \begin{pmatrix} 6 & 2 \\ 0 & -14 \end{pmatrix} \ C_1 \mapsto C1 - 3C_2 \ \begin{pmatrix} 0 & 2 \\ 42 & -14 \end{pmatrix} \ C_1 \leftrightarrow C_2 \ \begin{pmatrix} 2 & 0 \\ -14 & 42 \end{pmatrix}$$

(c) Perform elementary row and column operations on C to convert it to diagonal form $D = \begin{pmatrix} r & 0 \\ 0 & s \end{pmatrix}$ with r|s. Solution: We perform the single operation

$$\begin{pmatrix} 2 & 0 \\ -14 & 42 \end{pmatrix} R_2 \mapsto R_2 + 7R_1 \begin{pmatrix} 2 & 0 \\ 0 & 42 \end{pmatrix}$$

(d) Use your sequence of elementary row and column operations from Parts (a), (b) and (c) to find a basis $\{u,v\}$ for $G=\mathbb{Z}^2$ such that $\{ru,sv\}$ is a basis for H.

Solution: The column operations can be used to change our basis for H:

$$\begin{pmatrix} 48 & 70 \\ 66 & 98 \end{pmatrix} \ C_2 \mapsto C_2 - 2C_1 \ \begin{pmatrix} 48 & -26 \\ 66 & -34 \end{pmatrix} \ C_1 \mapsto C_1 - 3C_2 \ \begin{pmatrix} 126 & -26 \\ 168 & 34 \end{pmatrix} \ C_1 \leftrightarrow C_2 \ \begin{pmatrix} -26 & 126 \\ -34 & 168 \end{pmatrix}$$

and the row operations can be used to change from the standard basis in \mathbb{Z}^2 : performing the inverse row operations in reverse order gives

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} R_2 \mapsto R_2 - 7R_1 \begin{pmatrix} 1 & 0 \\ -7 & 1 \end{pmatrix} R_1 \leftrightarrow R_2 \begin{pmatrix} -7 & 1 \\ 1 & 0 \end{pmatrix} R_1 \mapsto R_1 + 2R_2 \begin{pmatrix} -5 & 1 \\ 1 & 0 \end{pmatrix}$$

$$R_2 \mapsto R_2 + R_1 \begin{pmatrix} -5 & 1 \\ -4 & 1 \end{pmatrix} R_1 \mapsto R_1 + 2R_2 \begin{pmatrix} -13 & 3 \\ -4 & 1 \end{pmatrix} R_2 \mapsto R_2 + R_1 \begin{pmatrix} -13 & 3 \\ -17 & 4 \end{pmatrix}$$

Thus we can take $u = \begin{pmatrix} -13 \\ -17 \end{pmatrix}$ and $v = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ with r = 2 and s = 42.