1: (a) For each of the two quotient groups $U_{16}/\langle 7 \rangle$ and $U_{16}/\langle 9 \rangle$, list all elements in each coset, determine the multiplication tables, and determine whether the group is isomorphic to \mathbb{Z}_4 or to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.

Solution: We have $U_{16} = \{1, 3, 5, 7, 9, 11, 13, 15\}$, $\langle 7 \rangle = \{1, 7\}$ and $U_{16}/\langle 7 \rangle = \{\{1, 7\}, \{3, 5\}, \{9, 15\}, \{11, 15\}\}$, and $\langle 9 \rangle = \{1, 9\}$ and $U_{16}/\langle 9 \rangle = \{\{1, 9\}, \{3, 11\}, \{5, 13\}, \{7, 13\}\}$. Here are the multiplication tables:

```
\{11, 13\}
                            {3,5}
                                         \{9, 15\}
               \{1,7\}
                                                                                       \{1, 9\}
                                                                                                   {3,11}
                                                                                                                \{5, 13\}
                                                                                                                            \{7, 15\}
 \{1, 7\}
               \{1,7\}
                            {3,5}
                                                      {11, 13}
                                                                          \{1, 9\}
                                                                                       \{1, 9\}
                                                                                                   {3,11}
                                                                                                                \{5, 13\}
                                         \{9, 15\}
                                                                                                                            \{7, 15\}
 {3,5}
               {3,5}
                            \{9, 15\}
                                        \{11, 13\}
                                                        \{1,7\}
                                                                          {3,11}
                                                                                      \{3,11\}
                                                                                                   \{1, 9\}
                                                                                                                \{7, 15\}
                                                                                                                            \{5, 13\}
                                                        {3,5}
\{9, 15\}
              \{9, 15\}
                           \{11, 13\}
                                          \{1,7\}
                                                                          \{5, 13\}
                                                                                      \{5, 13\}
                                                                                                   \{7, 15\}
                                                                                                                \{1, 9\}
                                                                                                                            {3,11}
\{11, 13\}
             \{11, 13\}
                            \{1,7\}
                                          \{3, 5\}
                                                       \{9, 15\}
                                                                          \{7, 15\}
                                                                                      \{7, 15\}
                                                                                                  \{15, 13\}
                                                                                                                {3,11}
                                                                                                                             \{1, 9\}
```

From the multiplication tables, we see that $U_{16}/\langle 7 \rangle \cong \mathbb{Z}_4$ and $U_{16}/\langle 9 \rangle \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

(b) List all the elements in each left coset of $H = \langle F_0 \rangle$ in D_4 and find all the conjugate subgroups, that is find all subgroups of D_4 of the form aHa^{-1} for some $a \in D_4$.

```
Solution: We have D_4 = \{I, R_1, R_2, R_3, F_0, F_1, F_2, F_3\} and \langle F_0 \rangle = \{I, F_0\}. The cosets are IH = \{I, F_0\}, R_1H = \{R_1, F_1\}, R_2H = \{R_2, F_2\}, R_3H = \{R_3, F_3\}, F_0H = \{F_0, I\}, F_1H = \{F_1, R_1\}, F_2H = \{F_2, R_2\} and F_3H = \{F_3, R_3\}.
```

The subgroups of the form aHa^{-1} with $a \in D_4$ are IHI = H, $R_1HR_3 = \{I, F_2\}$, $R_2HR_2 = \{I, F_0\}$, $R_3HR_1 = \{I, F_2\}$, $F_0HF_0 = \{I, F_0\}$, $F_1HF_1 = \{I, F_0\}$, $F_2HF_2 = \{I, F_0\}$ and $F_3HF_3 = \{I, F_0\}$. Thus there are two distinct such subgroups, namely $\langle F_0 \rangle = \{I, F_0\}$ and $\langle F_2 \rangle = \{I, F_2\}$.

2: (a) Let $H = \{(1), (134), (143), (13), (14), (34)\} \leq S_4$. List all of the elements in each left coset of H in S_4 and determine whether $H \subseteq S_4$.

Solution: The left cosets are

$$(1)H = \{(1), (134), (143), (13), (14), (34)\}$$

$$(12)H = \{(12), (1342), (1432), (132), (142), (12)(34)\}$$

$$(23)H = \{(23), (1234), (1423), (123), (14)(23), (234)\}$$

$$(24)H = \{(24), (1324), (1243), (13)(24), (124), (243)\}$$

and the right coset containing (12) is

$$H(12) = \{(12), (1234), (1243), (123), (124), (12)(34)\}.$$

Since $(12)H \neq H(12)$, we see that H is not a normal subgroup of G.

(b) Let $N = \{(1), (12)(34), (13)(24), (14)(23)\} \le S_4$. Show that $N \le S_4$ and determine whether S_4/N is isomorphic to \mathbb{Z}_6 or to D_3 .

Solution: The left cosets are

$$\begin{split} (1)N &= N, \\ (12)N &= \{(12), (34), (1324), (1423)\}, \\ (13)N &= \{(13), (1234), (24), (1432)\}, \\ (14)N &= \{(14), (1243), (1342), (23)\}, \\ (123)N &= \{(123), (134), (243), (142)\} \text{ and } \\ (124)N &= \{(124), (143), (132), (234)\} \end{split}$$

and the right cosets are

$$\begin{split} N(1) &= N, \\ N(12) &= \{(12), (34), (1423), (1324)\}, \\ N(13) &= \{(13), (1432), (24), (1234)\}, \\ N(14) &= \{(14), (1342), (1243), (23)\}, \\ N(123) &= \{(123), (243), (142), (134)\} \text{ and } \\ N(124) &= \{(124), (234), (143), (132)\}. \end{split}$$

Since the left cosets are equal to the right cosets, N is normal.

In S_4/N we have $((12)N)^2 = ((13)N)^2 = ((14)N)^2 = N$, so S_4/N has (at least) 3 elements of order 2 while \mathbb{Z}_6 has only 2 elements of order 2, so $S_4/N \cong D_3$.

3: (a) (The Orbit/Stabilizer Theorem) Let A be a nonempty set and let G be a finite subgroup of Perm(A). For $a \in A$, the **orbit** of a is the set $Orb(a) = \{\sigma(a) \mid \sigma \in G\} \subseteq A$, and the **stabilizer** of a is the set $Orb(a) = \{\sigma(a) \mid \sigma \in G\} \subseteq A$, we have $Orbit(a) = \{\sigma(a) \mid \sigma(a) = A\}$. Show that for all $a \in A$, we have Orbit(a) = A and Orbit(a) = A and Orbit(a) = A are Orbit(a) = A.

Solution: We note that $\operatorname{Stab}(a)$ is a subgroup of G by the Finite Subgroup Test because the identity element is the identity function I which satisfies I(a) = a so that $I \in \operatorname{Stab}(a)$, and because given $\sigma, \tau \in \operatorname{Stab}(a)$ so that $\sigma(a) = a$ and $\sigma(a) = a$, we have $\sigma(a) = \sigma(a) = a$ so that $\sigma(a) = a$ so

Define $F: G/\operatorname{Stab}(a) \to \operatorname{Orb}(a)$ by $F(\sigma \operatorname{Stab}(a)) = \sigma(a)$, where $\sigma \in G$. Note that F is well-defined because for $\sigma, \tau \in G$, if $\sigma \operatorname{Stab}(a) = \tau \operatorname{Stab}(a)$ then $\tau^{-1}\sigma \in \operatorname{Stab}(a)$ so that $\tau^{-1}\sigma(a) = a$ and hence $\sigma(a) = \tau \tau^{-1}\sigma(a) = \tau(\tau^{-1}\sigma(a)) = \tau(a)$. The map F is clearly surjective, and F is also injective because, given $\sigma, \tau \in G$, if $F(\sigma \operatorname{Stab}(a)) = F(\tau \operatorname{Stab}(a))$ then we have $\sigma(a) = \tau(a)$ and hence $\tau^{-1}\sigma(a) = a$ so that $\sigma \operatorname{Stab}(a) = \tau \operatorname{Stab}(a)$. Since F is bijective, we have $|G/\operatorname{Stab}(a)| = |\operatorname{Orb}(a)|$. By Lagrange's Theorem, it follows that $|G| = |G/\operatorname{Stab}(a)| |\operatorname{Stab}(a)| = |\operatorname{Orb}(a)| |\operatorname{Stab}(a)|$.

(b) Let $G = \{(1), (13)(46), (13)(25), (14)(36), (16)(34), (25)(46), (1436)(25), (1634)(25)\} \le \text{Perm}\{1, 2, \dots, n\}$. Find Orb(1), Stab(1), Orb(2) and Stab(2).

Solution: From the definition of Orb(a) and Stab(a), we have

$$Orb(1) = \{1, 3, 4, 6\}$$

$$Stab(1) = \{(1), (25)(46)\}$$

$$Orb(2) = \{2, 5\}$$

$$Stab(2) = \{(1), (13)(46), (14)(36), (16)(34)\}$$

(c) Let $G = GL_3(\mathbb{Z}_2) \leq \operatorname{Perm}(\mathbb{Z}_2^3)$ and let $a = e_1 = (1, 0, 0)^T \in \mathbb{Z}_2^3$. Find $|\operatorname{Orb}(a)|$ and $|\operatorname{Stab}(a)|$.

Solution: For $A \in GL_3(\mathbb{Z}_2)$ note that Ae_1 is the first column of A. So the orbit of e_1 is the set of all possible leading columns of the matrices in $GL(3,\mathbb{Z}_2)$. Since the first column can be anything other than the zero vector, there are $2^3 - 1 = 7$ possible leading columns. Thus $|\operatorname{Orb}(e_1)| = 7$. Since we have $|GL(2,\mathbb{Z}_3)| = (8-1)(8-2)(8-4) = 168$, the Orbit/Stabilizer theorem implies that $|\operatorname{Stab}(e_1)| = 168/7 = 24$.

4: (a) Find all the homomorphisms $\phi: \mathbb{Z}_4 \to \mathbb{C}^*$. For each one, describe its kernel and image.

Solution: The homomorphisms are the maps $\phi_a : \mathbb{Z}_4 \to \mathbb{C}^*$ given by $\phi_a(k) = a^k$, where $a \in \mathbb{C}^*$ with $a^4 = 1$, that is $a = \pm 1, \pm i$. Explicitly, the maps ϕ_a are given by

So $Ker(\phi_1) = \mathbb{Z}_4$, $Image(\phi_1) = \{1\}$, $Ker(\phi_{-1}) = \{0, 2\}$, $Image(\phi_{-1}) = \{\pm 1\}$, $Ker(\phi_i) = Ker(\phi_{-i}) = \{0\}$, and $Image(\phi_i) = Image(\phi_{-i}) = \{\pm 1, \pm i\}$.

(b) Show that $\mathbb{S}^1/C_n \cong \mathbb{S}^1$ where $\mathbb{S}^1 = \{z \in \mathbb{C}^* | |z| = 1\}$ and $C_n = \{z \in \mathbb{C}^* | z^n = 1\}$.

Solution: Define $\phi: \mathbb{S}^1 \to \mathbb{S}^1$ by $\phi(e^{i\,\theta}) = e^{i\,n\theta}$, or equivalently by $\phi(z) = z^n$. Note that ϕ is a homomorphism because $\phi(zw) = (zw)^n = z^nw^n = \phi(z)\phi(w)$. Note that ϕ is surjective because given $w = e^{i\,\theta} \in \mathbb{S}^1$ we can take $z = e^{i\,\theta/n}$ to get $\phi(z) = w$. Finally note that $z \in \text{Ker}(\phi) \iff \phi(z) = 1 \iff z^n = 1 \iff z \in C_n$ and so $\text{Ker}(\phi) = C_n$. By the First Isomorphism Theorem, we have $\mathbb{S}^1/C_n \cong \mathbb{S}^1$.

(c) Let H be the spiral $H = \{ r e^{i\theta} \in \mathbb{C}^* | r = e^{\theta/\pi} \} \leq \mathbb{C}^*$. Show that $\mathbb{C}^*/H \cong \mathbb{S}^1$.

Solution: Note that for $r, \theta \in \mathbb{R}$ we have $r = e^{\theta/\pi} \iff \theta = \pi \ln r$. Define $\phi : \mathbb{C}^* \to \mathbb{S}^1$ by

$$\phi(re^{i\,\theta}) = e^{i\,(\theta - \pi \ln r)} = e^{i\pi}e^{-\pi \ln r} \text{ , or equivalently } \phi(z) = \tfrac{z}{|z|}\,e^{-i\pi \ln |z|}\,.$$

Note that ϕ is a group homomorphism since for $z,w\in\mathbb{C}^*$ we have

$$\phi(zw) = \tfrac{zw}{|zw|} \, e^{-i\pi \ln|zw|} = \tfrac{z}{|z|} \, \tfrac{w}{|w|} \, e^{-i\pi(\ln|z| + \ln w)} = \tfrac{z}{|z|} \, e^{-i\pi \ln|z|} \, \cdot \tfrac{w}{|w|} \, e^{-i\pi \ln|w|} = \phi(z)\phi(w) \, .$$

Also note that ϕ is surjective since when |z|=1 we have $\phi(z)=z\,e^{-i\pi\ln 1}=z\,e^0=z$. Finally, we claim that ${\rm Ker}(\phi)=H$. Let $z\in H$, say $z=re^{i\,\theta}$ with $r=e^{\theta/\pi}$, so $\theta=\pi\ln r$. Then

$$\phi(z) = \phi(re^{i\theta}) = e^{i(\theta - \pi \ln r)} = e^{i(\theta - \theta)} = e^0 = 1$$

so we have $z \in \text{Ker}(\phi)$. Conversely, suppose that $z \in \text{Ker}(\phi)$, say $z = r e^{i\alpha}$ where $r, \alpha \in \mathbb{R}$ with r > 0. Then

$$1 = \phi(z) = \phi(r e^{i \alpha}) = e^{i(\alpha - \pi \ln r)}$$

so we can choose $k \in \mathbb{Z}$ so that $\alpha - \pi \ln r = 2\pi k$. Let $\theta = \alpha - 2\pi k$. Then we have $e^{i\alpha} = e^{i\theta}$ so that $z = re^{i\alpha} = re^{i\theta}$, and we have $\theta = \pi \ln r$ so that $z = re^{i\theta} \in H$. Thus $\operatorname{Ker}(\phi) = H$, as claimed. By the First Isomorphism Theorem, $H \preceq \mathbb{C}^*$ and $\mathbb{C}^*/H \cong \mathbb{S}^1$.