- 1: (a) For each of the two quotient groups $U_{16}/\langle 7 \rangle$ and $U_{16}/\langle 9 \rangle$, list all elements in each coset, determine the multiplication tables, and determine whether the group is isomorphic to \mathbb{Z}_4 or to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.
 - (b) List all the elements in each left coset of $H = \langle F_0 \rangle$ in D_4 and find all the conjugate subgroups, that is find all subgroups of D_4 of the form aHa^{-1} for some $a \in D_4$.
- **2:** (a) Let $H = \{(1), (134), (143), (13), (14), (34)\} \leq S_4$. List all of the elements in each left coset of H in S_4 and determine whether $H \subseteq S_4$.
 - (b) Let $N = \{(1), (12)(34), (13)(24), (14)(23)\} \leq S_4$. Show that $N \subseteq S_4$ and determine whether S_4/N is isomorphic to \mathbb{Z}_6 or to D_3 .
- **3:** (a) (The Orbit/Stabilizer Theorem) Let A be a nonempty set and let G be a finite subgroup of Perm(A). For $a \in A$, the **orbit** of a is the set $Orb(a) = \{\sigma(a) \mid \sigma \in G\} \subseteq A$, and the **stabilizer** of a is the set $Orb(a) = \{\sigma(a) \mid \sigma \in G\} \subseteq A$, we have $Orbit(a) = \{\sigma(a) \mid \sigma(a) = a\}$. Show that for all $a \in A$, we have Orbit(a) = a orbit($Orbit(a) \mid A$).
 - (b) Let $G = \{(1), (13)(46), (13)(25), (14)(36), (16)(34), (25)(46), (1436)(25), (1634)(25)\} \le \text{Perm}\{1, 2, \dots, n\}$. Find Orb(1), Stab(1), Orb(2) and Stab(2).
 - (c) Let $G = GL_3(\mathbb{Z}_2) \leq \operatorname{Perm}(\mathbb{Z}_2^3)$ and let $a = e_1 = (1, 0, 0)^T \in \mathbb{Z}_2^3$. Find $|\operatorname{Orb}(a)|$ and $|\operatorname{Stab}(a)|$.
- **4:** (a) Find all the homomorphisms $\phi: \mathbb{Z}_4 \to \mathbb{C}^*$. For each one, describe its kernel and image.
 - (b) Show that $\mathbb{S}^1/C_n \cong \mathbb{S}^1$ where $\mathbb{S}^1 = \{z \in \mathbb{C}^* | |z| = 1\}$ and $C_n = \{z \in \mathbb{C}^* | z^n = 1\}$.
 - (c) Let H be the spiral $H = \{ r e^{i\theta} \in \mathbb{C}^* | r = e^{\theta/\pi} \} \leq \mathbb{C}^*$. Show that $\mathbb{C}^*/H \cong \mathbb{S}^1$.