1: (a) Let $G = \left\{ \begin{pmatrix} a - b \\ b & a \end{pmatrix} \in GL_2(\mathbb{R}) \middle| a, b \in \mathbb{R} \right\}$. Show that G is a group and that $G \cong \mathbb{C}^*$.

Solution: First we show that G is a group. G is closed under matrix multiplication since if $A, B \in G$, say $A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ and $B = \begin{pmatrix} c & -d \\ d & c \end{pmatrix}$, then $AB = \begin{pmatrix} ac-bd & -ad-bc \\ ac-bd & ac-bd \end{pmatrix}$, which is of the correct form to belong to G, and since A and B are invertible, we know (from linear algebra) that AB is also invertible, hence $AB \in G$. Also, we clearly have $I \in G$. Finally, if $A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in G$ then A is invertible with $A^{-1} = \frac{1}{a^2+b^2} \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, so $A^{-1} \in G$.

Now we show that $G \cong \mathbb{C}^*$. Define $\phi: G \to \mathbb{C}^*$ by $\phi {a-b \choose b-a} = a+ib$. This map ϕ is well defined since when $A = {a-b \choose b-a} \in G$ we have $\det A = a^2 + b^2 \neq 0$ and so $a+ib \neq 0$ and so $a+ib \in \mathbb{C}^*$. ϕ is onto since given $z = a+ib \in \mathbb{C}^*$ we can let $A = {a-b \choose b-a}$ and then $\det A = a^2 + b^2 \neq 0$ so $A \in G$ and we have $\phi(A) = z$. The map ϕ is clearly one-to-one. Finally, ϕ preserves the operations since

$$\phi\left(\begin{pmatrix} a & -b \\ b & a \end{pmatrix}\begin{pmatrix} c & -d \\ d & c \end{pmatrix}\right) = \phi\begin{pmatrix} ac-bd & -ad-bc \\ ad+bc & ac-bd \end{pmatrix} = (ac-bd) + i(ad+bc)$$
$$= (a+ib)(c+id) = \phi\begin{pmatrix} a & -b \\ b & a \end{pmatrix}\phi\begin{pmatrix} c & -d \\ d & c \end{pmatrix}.$$

(b) Suppose that $\phi: U_{30} \to \mathbb{Z}_2 \times \mathbb{Z}_4$ is a group isomorphism. Find $\phi(19)$.

Solution: In U_{30} note that $7^2 = 19$, $7^3 = 13$ and $7^4 = 1$ so that |7| = 4. Since ϕ is an isomorphism we must have $|\phi(7)| = 4$ and so $\phi(7) \in \{(0,1), (1,1), (0,3), (1,3)\}$. Thus $\phi(19) = \phi(7^2) = 2\phi(7) = (0,2)$.

2: Show that no two of the groups \mathbb{Z}_{12} , U_{28} , D_6 and A_4 are isomorphic.

Solution: The number of elements of each order in \mathbb{Z}_{12} is given by

In $U_{28} = \{1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 27\}$ we have

From the list of powers of 3 we see that |3| = |19| = 6, |9| = |25| = 3 and |27| = 2, from the list of powers of 5 we see that |5| = |17| = 6 and |13| = 2, and from the list of powers of 11 we see that |11| = |23| = 6 and |15| = 2, and so we have

Thus the number of elements of each order in U_{28} is given by

$$|x|$$
 1 2 3 6 # of such x 1 3 2 6

The orders of the elements in D_6 are

so the number of elements of each order in D_6 is as follows

Finally, in A_4 we have

form of
$$\alpha$$
 $|\alpha|$ # of such α

$$(abc) \qquad 3 \qquad 8$$

$$(ab)(cd) \qquad 2 \qquad 3$$

$$(a) \qquad 1 \qquad 1$$

We see that no two of the four given groups have the same number of elements of each order, and so no two of them are isomorphic.

3: (a) The elements of D_4 permute the 4th roots of unity, namely $e^{i k\pi/2}$ for $k \in \mathbb{Z}_4 = \{1, 2, 3, 4\}$, and so each element of D_4 determines a permutation of \mathbb{Z}_4 . In this way, we can think of D_4 as a subgroup of S_4 . To be precise, there is an isomorphism $\phi: D_4 \to H = \phi(D_4) \leq S_4$ which is determined by $\phi(R_1) = (1234)$ and $\phi(F_0) = (13)$. Find all the elements of $H = \phi(D_4)$.

Solution: We have $\phi(1) = (1)$, $\phi(R_1) = (1234)$, $\phi(R_2) = \phi(R_1^2) = \phi(R_1)^2 = (1234)^2 = (13)(24)$, $\phi(R_3) = \phi(R_1)^3 = (1234)^3 = (1432)$, $\phi(F_0) = (13)$, $\phi(F_1) = \phi(R_1F_0) = \phi(R_1)\phi(F_0) = (1234)(13) = (14)(23)$, $\phi(F_2) = \phi(R_2)\phi(F_0) = (13)(24)(13) = (24)$ and $\phi(F_3) = \phi(R_3)\phi(F_0) = (1432)(13) = (12)(34)$ (these values can also be seen geometrically), so $H = \phi(D_4) = \{(1), (1234), (13)(24), (1432), (13), (14)(23), (24), (12)(34)\}$.

(b) Let $f: U_9 \to \{1, 2, 3, 4, 5, 6\}$ be the bijection given by

and define $\phi: U_9 \to S_6$ by $\phi(a) = f \circ L_a \circ f^{-1}$, that is $\phi(a)(k) = f(a f^{-1}(k))$. List all the elements in $\phi(U_9)$.

Solution: The following table shows $\phi(a)(k) = f(a f^{-1}(k))$ for the different values of a and k, so the permutation $\phi(a)$ appears in row a (for example we have $\phi(2)(5) = f(2 \cdot f^{-1}(5)) = f(2 \cdot 7) = f(14 \mod 9) = f(5) = 4$).

Thus $\phi(U_9) = \{(1), (123654), (135)(264), (145632), (153)(246), (16)(25)(34)\}$. (one way to check the answer is to notice that U_9 is cyclic with generator 2 and so $\phi(G)$ should be cyclic with generator $\phi(2) = (123654)$).

4: (a) Find $Inn(D_4)$ (that is, list all the distinct elements in $Inn(D_4)$).

Solution: Using the rules $R_k R_l R_{-k} = R_l$, $R_k F_l R_{-k} = R_k F_{l+k} = R_{2k+l}$, $F_k R_l F_k = F_k F_{k+l} = R_{-l}$ and $F_k F_l F_k = F_k R_{l-k} = F_{2k-l}$, we make a table showing the values of $C_a(x) = a x a^{-1}$ for $a, x \in D_4$.

We se that there are 4 distinct rows, indeed $I = \mathcal{C}_I = \mathcal{C}_{R_2}$, $\mathcal{C}_{R_1} = \mathcal{C}_{R_3}$, $\mathcal{C}_{F_0} = \mathcal{C}_{F_2}$ and $\mathcal{C}_{F_1} = \mathcal{C}_{F_3}$, so there are 4 distinct inner automorphisms; $\operatorname{Inn}(D_4) = \{I, \mathcal{C}_{R_1}, \mathcal{C}_{F_0}, \mathcal{C}_{F_1}\}$.

(b) Show that $|\operatorname{Aut}(D_4)| > |\operatorname{Inn}(D_4)|$.

Solution: Since $\operatorname{Inn}(D_4)$ is a subgroup of $\operatorname{Aut}(D_4)$ we have $\left|\operatorname{Aut}(D_4)\right| \geq \left|\operatorname{Inn}(D_4)\right|$, so we must find one element of $\operatorname{Aut}(D_4)$ which is not an element of $\operatorname{Inn}(D_4)$. Define $\phi: D_4 \to D_4$ by $\phi(R_k) = R_k$ and $\phi(F_l) = F_{l+1}$. Then ϕ is clearly bijective. And ϕ preserves the operation since $\phi(R_k R_l) = \phi(R_{k+1}) = R_{k+1} = R_k R_l = \phi(R_k)\phi(R_l)$, $\phi(R_k F_l) = \phi(F_{k+1}) = F_{k+1} = R_k F_{l+1} = \phi(R_k)\phi(F_l)$, $\phi(F_k R_l) = \phi(F_{k-1}) = F_{k+1} = F_{k+1}R_l = \phi(F_k)\phi(R_l)$ and $\phi(F_k F_l) = \phi(R_{k-1}) = R_{k-1} = F_{k+1}F_{l+1} = \phi(F_k)\phi(F_l)$. Thus $\phi \in \operatorname{Aut}(D_4)$. But, from the above table, there is no inner automorphism which maps F_0 to F_1 , and so $\phi \notin \operatorname{Inn}(D_4)$.