PMATH 336 Intro to Group Theory, Solutions to Assignment 1

- 1: Determine which of the following are groups and which of the groups are abelian.
 - (a) $G = \{1, 4, 7, 10, 13\}$ under multiplication modulo 15.

Solution: This is not a group because 10 does not have an inverse under multiplication modulo 15.

(b) $G = \{p(x) = ax + b | a \in U_4, b \in \mathbb{Z}_4\}$ under composition of polynomials.

Solution: We claim that G is a group. If f(x) = ax + b with $a \in U_4$ and $b \in \mathbb{Z}_4$, and g(x) = cx + d with $c \in U_4$ and $d \in \mathbb{Z}_4$, then we have f(g(x)) = f(cx + d) = a(cx + d) + b = acx + (ad + b), and we have $f(g(x)) \in G$ since $ac \in U_4$ and $ad + b \in \mathbb{Z}_4$. Thus the operation is closed. We know that composition is associative. The identity function I is given by I(x) = 1x + 0, which is G. Given f(x) = ax + b, we can find its inverse g(x) = cx + d by solving f(g(x)) = I(x), that is acx + (ad + b) = 1x + 0: we need ac = 1, so $c = a^{-1}$, and we need ad + b = 0, so $d = -a^{-1}b$, and so the inverse of f(x) = ax + b is given by $g(x) = a^{-1}x - a^{-1}b$, which is in G. Thus G is a group, as claimed. The group G is not abelian since, for example, if f(x) = 3x and g(x) = x + 1 then f(g(x)) = 3x + 3 but g(f(x)) = 3x + 1.

(c) $G = \{x \in \mathbb{R} | x > 1\}$ under the operation * given by x * y = xy - x - y + 2.

Solution: We claim that G is a group. Note first that for all $x, y \in \mathbb{R}$ we have

$$x * y = xy - x - y + 2 = (x - 1)(y - 1) + 1$$
.

In particular, when x, y > 1 we have x * y = (x - 1)(y - 1) + 1 > (1 - 1)(1 - 1) + 1 = 1 and so * does indeed give an operation on G. Also, the operation * is associative since

$$(x*y)*z = ((x-1)(y-1)+1)*z = (x-1)(y-1)(z-1)+1 = x*((y-1)(z-1)+1) = x*(y*z).$$

The identity is e = 2 since we have x * 2 = (x - 1)(2 - 1) + 1 = x and 2 * x = (2 - 1)(x - 1) + 1 = x. Finally note that the inverse of the $x \in G$ is $y = \frac{1}{x-1} + 1$ (which lies in G since x > 1 implies $\frac{1}{x-1} > 0$ and hence $y = \frac{1}{x-1} + 1 > 1$) since then $x * y = (x - 1)(y - 1) + 1 = (x - 1)(\frac{1}{x-1}) + 1 = 2 = e$ and $y * x = (y - 1)(x - 1) + 1 = (\frac{1}{x-1})(x - 1) + 1 = 2 = e$. Thus G is a group, as claimed. The group G is abelian since x * y = (x - 1)(y - 1) + 1 = (y - 1)(x - 1) + 1 = y * x.

- **2:** Let G be a group with identity e.
 - (a) Let $a, b \in G$ with $a^4 = e$ and $ab = ba^2$. Show that a = e.

Solution: We have $b = be = ba^4 = (ba^2)a^2 = (ab)a^2 = a(ba^2) = a(ab) = a^2b$. Since $a^2b = b$, we have $a^2 = e$ (by cancellation). Thus $ab = ba^2 = be = b$ and hence a = e (by cancellation).

(b) Let $a, b \in G$ with $a^{16} = b^9$ and $a^{25} = b^{14}$. Show that a = b.

Solution: We have $a = a^1 = a^{16 \cdot 11 - 25 \cdot 7} = (a^{16})^{11} (a^{25})^{-7} = (b^9)^{11} (b^{14})^{-7} = b^{9 \cdot 11 - 14 \cdot 7} = b^1 = b$.

(c) Let $a, b \in G$ with |a| = 2, $b \neq e$ and $ab = b^2a$. Find |b| and |ab|.

Solution: Multiply the equation $b^2a = ab$ on the right by a to get $b^2 = aba$ (since $a^2 = e$), then square both sides to get $b^4 = abaaba = abba = a(b^2a) = a(ab) = a^2b = b$. Multiply by b^{-1} to get $b^3 = e$. Since $b \neq e$ we also have $b^2 \neq e$ (since if $b^2 = e$ then multiplying both sides by b gives $b^3 = b$ and hence e = b), and so |b| = 3. Note that $ab \neq e$ since if we had ab = e we would have $b = eb = a^ab = a(ab) = ae = a$. On the other hand, we have $(ab)^2 = (ab)(ab) = (b^2a)(ab) = b^2a^2b = b^2eb = b^3 = e$, and so |ab| = 2.

3: (a) Write out the multiplication table for U_{20} .

Solution: Here is the multiplication table.

```
3
               7
                    9
                             13 17
                                       19
                        11
1
      1
           3
               7
                    9
                        11
                             13
                                  17
                                       19
3
      3
           9
               1
                    7
                        13
                             19
                                  11
                                       17
7
      7
           1
               9
                    3
                        17
                             11
                                  19
                                       13
9
      9
           7
               3
                    1
                        19
                             17
                                  13
                                        1
11
     11
          13
               17
                    19
                              3
                                   7
                                        9
                         1
          19
                         3
                                        7
13
     13
               11
                    17
                              9
                                   1
               19
                         7
                              9
17
     17
          11
                    13
                                   1
                                        3
19
     19
          17
               13
                    11
                         9
                                   3
                                        1
```

(b) Find the order of each element in U_{20} .

Solution: We make a table of powers modulo 20, and on the last row we indicate the order of each element.

(c) Solve $x^3y^6 = 3$ for $x, y \in U_{20}$.

Solution: Let $x, y \in U_{20-}$. From the above table of powers, we have $y^6 = y^2 \in \{1, 9\}$. When $y \in \{1, 9, 11, 19\}$ we have $y^6 = y^2 = 1$ so that $x^3y^6 = 3 \iff x^3 = 3 \iff x = 7$. When $y \in \{3, 7, 13, 17\}$ we have $y^6 = y^2 = 9$ so that $x^3y^6 = 3 \iff 9x^3 = 3 \iff 9 \cdot 9x^3 = 9 \cdot 3 \iff x^3 = 7 \iff x = 3$. Thus the solutions are the pairs (x, y) = (7, 1), (7, 9), (7, 11), (7, 19), (3, 3), (3, 7), (3, 13) and (3, 17).

- 4: When R is a commutative ring (with identity), the set $M_n(R)$ of $n \times n$ matrices with entries in R is a ring (with identity) under matrix addition and matrix multiplication. The subsets $GL_n(R) = \{A \in M_n(R) \mid \det A \neq 0\}$, $SL_n(R) = \{A \in M_n(R) \mid \det A = 1\}$, $O_n(R) = \{A \in M_n(R) \mid A^TA = I\}$ and $SO_n(R) = \{A \in O_n(R) \mid \det A = 1\}$ are groups (with identity) under matrix multiplication.
 - (a) Find $|SL_2(\mathbb{Z}_5)|$.

Solution: For a matrix in $GL_2(\mathbb{Z}_5)$, the two rows are linearly independent, so the first row cannot be zero, and the second row cannot be a multiple of the first; there are $5^2 - 1 = 24$ choices for the first row and $5^2 - 5 = 20$ choices for the second row, and so we have $|GL_2(\mathbb{Z}_5)| = 24 \cdot 20 = 480$.

For each matrix A in $SL_2(\mathbb{Z}_5)$, we obtain 4 matrices in $GL_2(\mathbb{Z}_5)$ by multiplying the first row of A by 1,2,3 or 4, and hence $|SL_2(\mathbb{Z}_5)| = \frac{1}{4}|GL_2(\mathbb{Z}_5)| = 120$.

We mark that the above argument shows more generally that for p prime we have

$$|SL_n(\mathbb{Z}_p)| = \frac{1}{p-1}(p^n-p)(p^n-p^2)\cdots(p^n-p^{n-1}).$$

(b) Find every element of order 2 in $SL_2(\mathbb{Z}_5)$.

Solution: Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. We have $A \in SL_2(\mathbb{Z}_5)$ and $A^2 = I \iff \det A = 1$ and $A = A^{-1} \iff \det A = 1$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \iff ad - bc = 1, a = d, b = -b, c = -c \iff a^2 = ad = 1, a = d, b = c = 0 \iff A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ with $a^2 = 1$. In \mathbb{Z}_5 we have $a^2 = 1 \iff a \in \{1, 4\}$, so the only elements $A \in SL_2(\mathbb{Z}_5)$ with $A^2 = 1$ are $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$. Thus the only element $A \in SL_2(\mathbb{Z}_5)$ with A = 2 is $A = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$.

(c) Find $|O_2(\mathbb{Z}_5)|$ and $|SO_2(\mathbb{Z}_5)|$.

Solution: If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in O_2(\mathbb{Z}_5)$ then we have $A^TA = I$, that is $\begin{pmatrix} a^2 + c^2 & ab + cd \\ ab + cd & b^2 + d^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Since $a^2 + c^2 = 1$, where a and b are in \mathbb{Z}_5 (so that $0^2 = 0$, $1^2 = 4^2 = 1$ and $2^2 = 3^2 = 4$) we must have $\begin{pmatrix} a \\ c \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ or $\begin{pmatrix} 0 \\ 4 \end{pmatrix}$. Similarly $\begin{pmatrix} b \\ d \end{pmatrix}$ is one of these 4 vectors. Also, we must have ab + cd = 0 so for example, when $\begin{pmatrix} a \\ c \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} b \\ d \end{pmatrix}$ must be equal to $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ or $\begin{pmatrix} 0 \\ 4 \end{pmatrix}$. We have $O_2(\mathbb{Z}_5) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}, \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 4 \\ 4 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 4 \\ 4 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 4 \\ 4 & 0 \end{pmatrix} \right\}$. The determinants of these matrices are all 1 or 4, and $SO_2(\mathbb{Z}_5) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 4 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 4 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 4 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 4 \\ 1 & 0 \end{pmatrix} \right\}$. Thus $|O_2(\mathbb{Z}_5)| = 8$ and $|SO_2(\mathbb{Z}_5)| = 4$.