AMATH/PMATH 331 Real Analysis, Solutions to the Problems for Chapter 8

1: Let $f: \mathbf{R} \to \mathbf{R}$ be the 2π -periodic function with $f(x) = x^3 - \pi^2 x$ for $-\pi \le x \le \pi$.

(a) Find the coefficients of the (real) Fourier series for f.

Solution: Since f(x) is odd we have $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = 0$ and $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \ dx = 0$ and $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \ dx = \frac{2}{\pi} \int_{0}^{\pi} (x^3 - \pi^2 x) \sin nx \ dx$. Integration by Parts gives

$$\int_0^\pi x \sin nx \ dx = \left[-\frac{1}{n} \ x \cos nx \right]_0^\pi + \int_0^\pi \frac{1}{n} \cos nx \ dx = -\frac{1}{n} \pi \cos n\pi = -\frac{(-1)^n \pi}{n}.$$

and

$$\begin{split} \int_0^\pi x^3 \sin nx \ dx &= \left[-\frac{1}{n} x^3 \cos nx \right]_0^\pi + \int_0^\pi \frac{3}{n} x^2 \cos nx \ dx \\ &= -\frac{(-1)^n \pi^3}{n} + \left[\frac{3}{n^2} x^2 \sin nx \right]_0^\pi - \int_0^\pi \frac{6}{n^2} x \sin nx \ dx \\ &= -\frac{(-1)^n \pi^3}{n} + 0 + \frac{6}{n^2} \frac{(-1)^n \pi}{n} = (-1)^n \left(\frac{6\pi}{n^3} - \frac{\pi^3}{n} \right) \end{split}$$

and so

$$b_n = \frac{2}{\pi} \int_0^{\pi} \left(x^3 - \pi^2 x \right) \sin nx \, dx = \frac{2}{\pi} \left((-1)^n \left(\frac{6\pi}{n^3} - \frac{\pi^3}{n} \right) + (-1)^n \frac{\pi^3}{n} \right) = \frac{(-1)^n 12}{n^3}.$$

(b) Show that $s_m(f) \to f$ uniformly on **R**.

Solution: Since $s_m(f)(x) = \sum_{n=1}^m \frac{(-1)^n 12}{n^3} \sin nx$ and $\left| \frac{(-1)^n 12}{n^3} \sin nx \right| \leq \frac{12}{n^3}$, it follows from the Weierstrass M Test that $\left\{ s_m(f)(x) \right\}$ converges uniformly on **R** (to some function g), and by Fejér's Theorem we have $\lim_{\ell \to \infty} s_m(f)(x) = \lim_{\ell \to \infty} \sigma_{\ell}(f)(x) = f(x)$ for all $x \in \mathbf{R}$.

(c) By evaluating at $x = \frac{\pi}{2}$, evaluate $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^3}$.

Solution: Since $f(x) = x^3 - \pi^2 x$ for $-\pi \le x \le \pi$, we have $f\left(\frac{\pi}{2}\right) = \left(\frac{\pi}{2}\right)^3 - \pi^2\left(\frac{\pi}{2}\right) = -\frac{3\pi^3}{8}$. On the other hand, since $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n 12}{n^3} \sin nx$, and since when n = 2k we have $\sin \frac{n\pi}{2} = 0$ and when n = 2k + 1 we have $\sin \frac{n\pi}{2} = (-1)^k$, we have $f\left(\frac{\pi}{2}\right) = \sum_{n=1}^{\infty} \frac{(-1)^n 12}{n^3} \sin \frac{n\pi}{2} = \sum_{n=1}^{\infty} \frac{(-1)^{2k+1} 12}{(2k+1)^3} (-1)^k = -\sum_{n=1}^{\infty} \frac{(-1)^k 12}{(2k+1)^3}$. Thus

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^3} = -\frac{1}{12} f\left(\frac{\pi}{2}\right) = \frac{1}{12} \cdot \frac{3\pi^3}{8} = \frac{\pi^3}{32}.$$

2: Let $f: \mathbf{R} \to \mathbf{R}$ be a 2π -periodic function whose restriction to $[-\pi, \pi]$ is continuous.

(a) Use Integration by Parts to show that if f is C^1 (meaning that the derivative f' exists and is continuous) then $|c_n(f)| \leq \frac{M}{|n|}$ for all $n \in \mathbf{Z}$ where $M = ||f'||_{\infty} = \max_{-\pi < t < \pi} |f'(t)|$.

Solution: Suppose that $f \in \mathcal{C}^1$ and let $M = \max_{-\pi \le t \le \pi} |f'(t)|$. Integration by Parts gives

$$c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-int} dt = \frac{1}{2\pi} \left(\left[\frac{i}{n} f(t)e^{-int} \right]_{-\pi}^{\pi} - \frac{i}{n} \int_{-\pi}^{\pi} f'(t)e^{-int} dt \right) = \frac{-i}{2\pi n} \int_{-\pi}^{\pi} f'(t)e^{-int} dt.$$

Thus we have $c_n(f) = \frac{-i}{2\pi n} c_n(f')$, and

$$\left| c_n(f) \right| \le \frac{1}{2\pi |n|} \int_{-\pi}^{\pi} \left| f'(t) \right| dt \le \frac{1}{2\pi |n|} 2\pi M = \frac{M}{|n|}.$$

(b) Use induction to show that if f in C^k (meaning that the k^{th} derivative of f exists and is continuous) then $\left|c_n(f)\right| \leq \frac{M}{(2\pi)^{k-1}|n|^k}$ for all $n \in \mathbf{Z}$ where $M = \left\|f^{(k)}(x)\right\|_{\infty} = \max_{-\pi \leq x \leq \pi} \left|f^{(k)}(x)\right|$.

Solution: Let $f \in \mathcal{C}^k$ and let $M = \max_{-\pi \le t \le \pi} |f^{(k)}(t)|$. In Part (a) we showed that $c_n(f) = \frac{-i}{2\pi n} c_n(f')$ and it follows, by induction, that $c_n(f) = \left(\frac{-i}{2\pi n}\right)^k c_n(f^{(k)})$, hence

$$\left|c_n(f)\right| = \left|\frac{1}{(2\pi)^k |n|^k} \int_{-\pi}^{\pi} f^{(k)}(t) e^{-int} dt\right| \le \frac{1}{(2\pi)^k |n|^k} \int_{-\pi}^{\pi} \left|f^{(k)}(t)\right| dt \le \frac{1}{(2\pi)^k |n|^k} 2\pi M = \frac{M}{(2\pi)^{k-1} |n|^k}.$$

(c) Show that if $f \in \mathcal{C}^2$ then $s_m(f) \to f$ uniformly on **R**.

Solution: Let $f \in \mathcal{C}^2$ and let $M = \max_{-\pi \le t \le \pi} |f''(t)|$. By Part (b) we have $|c_n(f)| \le \frac{M}{2\pi n^2}$ for all $n \in \mathbf{Z}$.

Since $s_m(f)(x) = \sum_{n=-m}^m c_n(f)e^{inx}$ and $\left|c_n(f)e^{inx}\right| = \left|c_n(f)\right| \leq \frac{M}{2\pi n^2}$, the Weierstrass M Test shows that the sequence $\left\{s_m(f)(x)\right\}$ converges uniformly on \mathbf{R} (to some function g(x)). By Fejér's Theorem, we have $\lim_{m\to\infty} s_m(f)(x) = \lim_{\ell\to\infty} \sigma_\ell(f)(x) = f(x)$ for all $x\in\mathbf{R}$.

3: Let $f \in \mathcal{R}(T)$, let $(c_n)_{n\geq 0}$ and $(d_n)_{n\geq 1}$ be sequences in **R** and let $p_m(x) = c_0 + \sum_{n=1}^m c_n \cos nx + \sum_{n=1}^m d_n \sin nx$.

(a) Show that if $p_m \to f$ in $(\mathcal{R}(T), \| \|_1)$ then $c_0 = a_0(f)$ and $c_n = a_n(f)$ and $d_n = b_n(f)$ for all $n \in \mathbf{Z}^+$.

Solution: Suppose $p_m \to f$ in $(\mathcal{R}(T), \| \|_1)$. Let $\epsilon > 0$. Choose $\ell \in \mathbf{Z}^+$ so that $m \ge \ell \Longrightarrow \|p_m - f\|_1 < 2\pi\epsilon$. Then for $m > \ell$ we have

$$\begin{aligned} \left| c_0 - a_n(f) \right| &= \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} p_m(x) - f(x) \, dx \right| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| p_m(x) - f(x) \right| dx = \frac{1}{2\pi} \| p_m - f \|_1 < \epsilon, \\ \left| c_n - a_n(f) \right| &= \left| \frac{1}{\pi} \int_{-\pi}^{\pi} \left(p_m(x) - f(x) \right) \cos nx \, dx \right| \le \frac{1}{\pi} \int_{-\pi}^{\pi} \left| p_m(x) - f(x) \right| dx = \frac{1}{\pi} \| p_m - f \|_1 < 2\epsilon, \\ \left| d_n - a_n(f) \right| &= \left| \frac{1}{\pi} \int_{-\pi}^{\pi} \left(p_m(x) - f(x) \right) \sin nx \, dx \right| \le \frac{1}{\pi} \int_{-\pi}^{\pi} \left| p_m(x) - f(x) \right| dx = \frac{1}{\pi} \| p_m - f \|_1 < 2\epsilon. \end{aligned}$$

Since $|c_0 - a_0(f)| < \epsilon$, $|c_n - a_n(f)| < 2\epsilon$ and $|d_n - b_n(f)| < 2\epsilon$ for all $\epsilon > 0$ it follows that $c_0 = a_0(f)$, $c_n = a_n(f)$ and $d_n = b_n(f)$.

(b) Show that if $p_m \to f$ in $(\mathcal{R}(T), \| \|_{\infty})$ then $c_0 = a_0(f)$ and $c_n = a_n(f)$ and $d_n = b_n(f)$ for all $n \in \mathbf{Z}^+$.

Solution: Suppose $p_m \to f$ in $(\mathcal{R}(T), \| \|_{\infty})$, that is $p_m \to f$ uniformly on $[-\pi, \pi]$. We remark that since $p_m \to f$ uniformly on $[-\pi, \pi]$, it follows that f is continuous (but we do not use the fact that f is continuous in our solution). Let $\epsilon > 0$. Choose $\ell \in \mathbf{Z}^+$ so that $m \ge \ell \Longrightarrow \|p_m - f\|_{\infty} < \epsilon$. Then for $m \ge \ell$ we have

$$\begin{aligned} |c_0 - a_n(f)| &= \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} p_m(x) - f(x) \, dx \right| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |p_m(x) - f(x)| \, dx \\ &\le \frac{1}{2\pi} \int_{-\pi}^{\pi} ||p_m - f||_{\infty} = ||p_m - f||_{\infty} < \epsilon, \\ |c_n - a_n(f)| &= \left| \frac{1}{\pi} \int_{-\pi}^{\pi} (p_m(x) - f(x)) \cos nx \, dx \right| \le \frac{1}{\pi} \int_{-\pi}^{\pi} |p_m(x) - f(x)| \, dx \\ &\le \frac{1}{\pi} \int_{-\pi}^{\pi} ||p_m - f||_{\infty} \, dx < 2\epsilon, \end{aligned}$$

and similarly $|d_n - b_n(f)| < 2\epsilon$. Since $|c_0 - a_0(f)| < \epsilon$, $|c_n - a_n(f)| < 2\epsilon$ and $|d_n - b_n(f)| < 2\epsilon$ for all $\epsilon > 0$ it follows that $c_0 = a_0(f)$, $c_n = a_n(f)$ and $d_n = b_n(f)$.

(c) Show that if $p_m \to f$ in $(\mathcal{R}(T), \| \|_2)$ then $c_0 = a_0(f)$ and $c_n = a_n(f)$ and $d_n = b_n(f)$ for all $n \in \mathbf{Z}^+$. Solution: Suppose $p_m \to f$ in $(\mathcal{R}(T), \| \|_2)$. Let $\epsilon > 0$, Choose $\ell \in \mathbf{Z}^+$ so that $m \le \ell \Longrightarrow \|p_m - f\|_2 < \frac{1}{\sqrt{2\pi}} \epsilon$. By the Cauchy-Schwarz Inequality, for $m \ge \ell$ we have

$$||p_m - f||_1 = \int_{-\pi}^{\pi} |p_m(x) - f(x)| dx = \langle 1, |p_m - f| \rangle \le ||1||_2 ||p_m - f||_2 = \sqrt{2\pi} ||p_m - f||_2 < \epsilon.$$

Thus $p_m \to f$ in $(\mathcal{R}(T), \| \|_1)$, so $c_0 = a_0(f)$ and $c_n = a_n(f)$ and $d_n = b_n(f)$ for all $n \in \mathbf{Z}^+$ by Part (a).

4: Let
$$f : \mathbf{R} \to \mathbf{R}$$
 be the 2π -periodic function with $f(x) = \begin{cases} 1 & \text{if } 0 < x < \pi, \\ -1 & \text{if } -\pi < x < 0, \\ 0 & \text{if } x = 0, \pm \pi. \end{cases}$

(a) Find the coefficients of the (real) Fourier series for f.

Solution: Since f(x) is odd we have $a_0 = 0$ and $a_n = 0$ for all $n \in \mathbb{Z}^+$ and we have

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \ dx = \frac{2}{\pi} \int_0^{\pi} \sin nx \ dx = \frac{2}{\pi} \left[-\frac{1}{n} \cos nx \right]_0^{\pi} = -\frac{2}{\pi n} \left((-1)^n - 1 \right) = \begin{cases} \frac{4}{n\pi} & \text{if } n \text{ is odd.} \\ 0 & \text{if } n \text{ is even.} \end{cases}$$

(b) By recognizing $s_{2m}(f)\left(\frac{\pi}{2m}\right)$ as a Riemann sum, show that $\lim_{m\to\infty} s_{2m}(f)\left(\frac{\pi}{2m}\right) = \frac{2}{\pi}\int_0^{\pi} \frac{\sin x}{x} dx$.

Solution: When we partition the interval $[0,\pi]$ into m equal-sized subintervals, the endpoints of the subintervals are $x_k = \frac{\pi k}{m}$ and the midpoints of the subintervals are $m_k = \frac{x_k + x_{k-1}}{2} = \frac{(2k-1)\pi}{2m}$. The Riemann sum for $\int_0^\pi \frac{\sin x}{x} dx$ using the midpoints of this partition is

$$R_m = \sum_{k=1}^m \frac{\sin m_k}{m_k} (x_k - x_{k-1}) = \sum_{k=1}^m \frac{\sin \frac{(2k-1)\pi}{2m}}{\frac{(2k-1)\pi}{2m}} \cdot \frac{\pi}{m} = 2 \sum_{k=1}^m \frac{\sin \frac{(2k-1)\pi}{2m}}{(2k-1)}$$

By Part (a) we have

$$s_{2m}(f)(x) = s_{2m-1}(f)(x) = \sum_{\substack{n \text{ odd} \\ 1 \le n \le 2m}} \frac{4}{n\pi} \sin nx = \frac{4}{\pi} \sum_{k=1}^{m} \frac{\sin(2k-1)x}{2k-1}$$

so, in particular,

$$s_{2m}(f)\left(\frac{\pi}{2m}\right) = \frac{4}{\pi} \sum_{k=1}^{m} \frac{\sin\frac{(2k-1)\pi}{2m}}{(2k-1)} = \frac{2}{\pi} R_m$$

Thus

$$\lim_{m \to \infty} s_{2m}(f)\left(\frac{\pi}{2m}\right) = \frac{2}{\pi} \lim_{m \to \infty} R_m = \frac{2}{\pi} \int_0^{\pi} \frac{\sin x}{x} dx.$$

(c) Using a computer to approximate the value of $\frac{2}{\pi} \int_0^{\pi} \frac{\sin x}{x} dx$, show that there exists $\ell \in \mathbf{Z}^+$ such that for all $m \ge \ell$ we have $||s_m(f) - f||_{\infty} > 0.17$.

Solution: Using uniform convergence of power series (allowing term-by-term integration) and the Alternating Series Test, and then using a calculator, we have

$$\frac{2}{\pi} \int_0^{\pi} \frac{\sin x}{x} dx = \frac{2}{\pi} \int_0^{\pi} \left(1 - \frac{1}{3!} x^2 + \frac{1}{5!} x^4 - \frac{1}{7!} x^7 + \dots \right) dx = \frac{2}{\pi} \left[x - \frac{1}{3 \cdot 3!} x^3 + \frac{1}{5 \cdot 5!} x^5 - \frac{1}{7 \cdot 7!} x^7 + \dots \right]_0^{\pi} \\
= \left(2 - \frac{2\pi^3}{2 \cdot 3!} + \frac{2\pi^4}{5 \cdot 5!} - \frac{2\pi^6}{7 \cdot 7!} + \dots \right) > \left(2 - \frac{2\pi^2}{3 \cdot 3!} + \frac{2\pi^4}{5 \cdot 5!} - \frac{2\pi^6}{7 \cdot 7!} \right) > 1.1735737$$

Choose $\ell \in \mathbf{Z}^+$ so that for $m \ge \ell$ we have $s_{2m}(f)(\frac{\pi}{2m}) - f(\frac{\pi}{2m}) > (1.173 - 1) = 0.173$. Then for all $m \ge \ell$ we have $||s_{2m-1}(f) - f||_{\infty} = ||s_{2m}(f) - f||_{\infty} \ge ||s_{2m}(f)(\frac{\pi}{2m}) - f(\frac{\pi}{2m})|| > 0.173$.

(d) (Optional Challenge) Show that $\{s_m(f)(x)\}$ converges for all x.

Solution: When $x = k\pi$ with $k \in \mathbf{Z}$ we have $s_m(f)(x) = 0$ for all x. Suppose that $x \neq k\pi$ for $k \in \mathbf{Z}$. Then

$$\sum_{k=0}^{n} \sin(2k+1)x = \operatorname{Im}\left(\sum_{k=0}^{n} e^{i(2k+1)x}\right) = \operatorname{Im}\left(\frac{e^{ix}\left(e^{i(n+1)2x}-1\right)}{e^{i2x}-1}\right)$$
$$= \operatorname{Im}\left(\frac{e^{ix} \cdot 2i e^{i(n+1)x} \sin(n+1)x}{2i e^{ix} \sin x}\right) = \frac{\sin^{2}(n+1)x}{\sin x} \le \frac{1}{\sin x}.$$

Since the partial sums $\sum_{k=0}^{n} \sin(2k+1)x$ are bounded by $\frac{1}{\sin x}$ and the sequence $\left\{\frac{4}{\pi(2k+1)}\right\}$ is decreasing with limit 0, it follows from Dirichlet's Test for Convergence (which most students will not have seen before, so they will need to look it up) that the series $\sum_{k=0}^{\infty} \frac{4}{\pi(2k+1)} \sin(2k+1)x$ converges.