1: (a) Find an example of a function $f : \mathbf{R} \to \mathbf{R}$ such that |f(y) - f(x)| < |y - x| for all $x, y \in \mathbf{R}$ with $x \neq y$, but f has no fixed point in \mathbf{R} .

Solution: Define $f: \mathbf{R} \to \mathbf{R}$ by f(x) = x + g(x) where $g: \mathbf{R} \to \mathbf{R}$ is any differential function with g(x) > 0 and -1 < g'(x) < 0 for all $x \in \mathbf{R}$ (for example, $g(x) = \frac{1}{4} \left(\sqrt{x^2 + 1} - x \right)$ or $g(x) = \frac{1}{2} - \frac{1}{\pi} \tan^{-1} x$). Given x < y, by the Mean Value Theorem we can choose c with $x \le c \le y$ such that g(y) - g(x) = g'(c)(y - x) and then

$$|f(y) - f(x)| = |(y - x) + (g(y) - g(x))| = |(y - x) + g'(c)(y - x)| = (1 + g'(c))(y - x) < (y - x)$$

since -1 < g'(c) < 0. But f has no fixed points because for all $x \in \mathbf{R}$ we have f(x) = x + g(x) > x, since g(x) > 0.

(b) Define $F: \mathcal{C}[0,1] \to \mathcal{C}[0,1]$ by $F(f)(x) = \int_0^x f(t) dt$. Show that F is not a contraction map but that $F^2 = F \circ F$ is.

Solution: Note that F and F^2 are linear maps on the normed linear space $\mathcal{C}[0,1]$. When f is the constant function f(x)=1 we have F(f)(x)=x so that $\|F(f)\|_{\infty}=1=\|f\|_{\infty}$, and so F is not a contraction. When $f\in\mathcal{C}[0,1]$ and F(f)=g we have

$$|g(x)| = \left| \int_0^x f(t) \, dt \right| \le \int_0^x |f(t)| \, dt \le \int_0^x ||f||_{\infty} dt = ||f||_{\infty} x$$

$$|F(g)(x)| = \left| \int_0^x g(t) \, dt \right| \le \int_0^x |g(t)| \, dt \le \int_0^x ||f||_{\infty} t \, dt = \frac{1}{2} ||f||_{\infty} x^2$$

so that $||F^2(f)||_{\infty} = ||F(g)||_{\infty} \le \frac{1}{2} ||f||_{\infty}$, and so F^2 is a contraction map with contraction constant $c = \frac{1}{2}$.

(c) Use the Banach Fixed Point Theorem to show that there exists a unique function $f \in \mathcal{C}[0,1]$ such that $f(x) = x + \int_0^x t \, f(t) \, dt$ for all $x \in [0,1]$.

Solution: Define $F: \mathcal{C}[0,1] \to \mathcal{C}[0,1]$ by $F(f)(x) = x + \int_0^x t f(t) dt$. Note that F is a contraction map because for $f,g \in \mathcal{C}[0,1]$ we have

$$\left| F(f)(x) - F(g)(x) \right| = \left| \left(x + \int_0^x t \, f(t) \, dt \right) - \left(x + \int_0^x t \, g(t) \, dt \right) \right| = \left| \int_0^x t \left(f(t) - g(t) \right) \, dt \right| \\
\leq \int_0^x \|f - g\|_{\infty} t \, dt = \frac{1}{2} \|f - g\|_{\infty} x^2$$

so that $||F(f) - F(g)||_{\infty} \le \frac{1}{2} ||f - g||_{\infty}$. By the Banach Fixed-Point Theorem, F has a unique fixed point $f \in \mathcal{C}[0,1]$, so there is a unique function $f \in \mathcal{C}[0,1]$ such that $f(x) = x + \int_0^x t f(t) dt$ for all $x \in [0,1]$.

2: (a) Let $A = \left\{ \sum_{k=1}^{n} f_k(x) g_k(y) \mid n \in \mathbf{Z}^+, f_k, g_k \in \mathcal{C}[0, 1] \right\}$. Show that A is dense in $\left(\mathcal{C}([0, 1] \times [0, 1]), d_{\infty} \right)$.

Solution: It is easy to see that A is a subalgebra of $\mathcal{C}([0,1]\times[0,1])$, and A vanishes nowhere because $1\in A$, and A separates points because $x\in A$ and $y\in A$ (and for $x_1,x_2,y_1,y_2\in[0,1]$, if $(x_1,y_1)\neq(x_2,y_2)$ then either $x_1\neq x_2$ or $y_1\neq y_2$). Thus A is dense in $\mathcal{C}([0,1]\times[0,1])$ by the Stone-Weierstrass Theorem.

(b) Let $A = \left\{ \sum_{k=0}^{n} (a_k \sin(kx) + b_k \cos(kx)) \middle| 0 \le n \in \mathbf{Z}, a_k, b_k \in \mathbf{R} \right\}$. Show that A is dense in $(\mathcal{C}[0, r], d_{\infty})$ for every $0 < r < 2\pi$, but A is not dense in $(\mathcal{C}[0, 2\pi], d_{\infty})$.

Solution: Let $0 < r < 2\pi$. Note that A is a subalgebra of $\mathcal{C}[0,r]$ because

$$\sin(kx)\sin(\ell x) = \frac{1}{2}\left(\cos\left((k-\ell)x\right) - \cos\left((k+\ell)x\right)\right),$$

$$\sin(kx)\cos(\ell x) = \frac{1}{2}\left(\sin\left((k+\ell)x\right) + \sin\left((k-\ell)x\right)\right),$$

$$\cos(kx)\sin(\ell x) = \frac{1}{2}\left(\sin\left((k+\ell)x\right) - \sin\left((k-\ell)x\right)\right) \text{ and }$$

$$\cos(kx)\cos(\ell x) = \frac{1}{2}\left(\cos\left((k+\ell)x\right) + \cos\left((k-\ell)x\right)\right),$$

and A vanishes nowhere because $1 \in A$, and A separates points because $\cos x \in A$ and $\sin x \in A$ and when $x, y \in [0, r]$ with $x \neq y$, either $\cos x \neq \sin x$ or $\cos y \neq \sin y$. Thus A is dense in $(\mathcal{C}([0, r]), d_{\infty})$ by the Stone-Weierstrass Theorem.

The reason that A is not dense in $C[0,2\pi]$ is that for every $f \in A$ we have $f(0) = f(2\pi)$. When $g \in C[0,2\pi]$ with $g(0) \neq g(2\pi)$, for every $f \in A$ we have

$$\left| g(0) - g(2\pi) \right| \le \left| g(0) - f(0) + f(2\pi) - g(2\pi) \right| \le \left| g(0) - f(0) \right| + \left| f(2\pi) - g(2\pi) \right| \le 2 \|f - g\|_{\infty}$$
 so that $\|f - g\|_{\infty} \ge \frac{1}{2} |g(0) - g(2\pi)|$.

(c) Show that there does exist $0 \neq f \in \mathcal{C}[-1,2]$ such that $\int_{-1}^{2} x^{2n} f(x) dx = 0$ for all $0 \leq n \in \mathbf{Z}$ but there does not exist $0 \neq f \in \mathcal{C}[-1,2]$ such that $\int_{-1}^{2} x^{3n} f(x) dx = 0$ for all $0 \leq n \in \mathbf{Z}$.

Solution: If f is any continuous function whose restriction to [-1,1] is odd and whose restriction to [1,2] is zero (such as the function given by $f(x) = \sin(\pi x)$ for $-1 \le x \le 1$ and f(x) = 0 for $1 \le x \le 2$) then we have $\int_{-1}^{2} x^{2n} f(x) dx = 0$ for all $0 \le n \in \mathbb{Z}$.

Let $A = \left\{ \sum_{k=0}^n c_k x^{3k} \,\middle|\, 0 \le n \in \mathbf{Z}, c_k \in \mathbf{R} \right\}$. Note that A is a subalgebra of $\mathcal{C}[-1,2]$ and A vanishes nowhere because $1 \in A$, and A separates points because $x^3 \in A$ and x^3 is strictly increasing on [-1,2], and so A is dense in $\mathcal{C}[-1,2]$ by the Stone-Weierstrass Theorem. Let $f \in \mathcal{C}[-1,2]$ with $\int_{-1}^2 x^{3n} f(x) \, dx = 0$ for all $0 \le n \in \mathbf{Z}$ and note that $\int_{-1}^2 pf = 0$ for every $p \in A$. Since A is dense in $\mathcal{C}[-1,2]$ we can choose a sequence $(p_n)_{n \ge 1}$ in A with $p_n \to f$ in $\mathcal{C}[-1,2]$. Then $p_n \to f$ uniformly on [-1,2], so $p_n f \to f^2$ uniformly on [-1,2], and hence $\int_{-1}^2 f^2 = \lim_{n \to \infty} \int_{-1}^2 p_n f = \lim_{n \to \infty} 0 = 0$. Since f is continuous on [-1,2] and $\int_{-1}^2 f^2 = 0$, it follows that f = 0.