1: (a) Let $A = \left\{ x \in \mathbf{R}^2 \,\middle|\, \|x\| = \frac{n+1}{n} \text{ for some } n \in \mathbf{Z}^+ \right\}$. Determine whether A is complete and whether A is compact.

Solution: Note that A is not closed in \mathbf{R}^2 because for the sequence $(x_n)_{n\geq 1}$ in \mathbf{R}^2 given by $x_n=\left(\frac{n+1}{n},0\right)$, we have $||x_n||=\frac{n+1}{n}$ so that each $x_n\in A$, and we have $\lim_{n\to\infty}x_n=e_1=(1,0)$ in \mathbf{R}^2 , but $e_1\notin A$ (since for all $n\in\mathbf{Z}^+$ we have $\frac{n+1}{n}>1=||e_1||$). Since \mathbf{R}^2 is complete and A is not closed in \mathbf{R}^2 , it follows from Theorem 6.4 that A is not complete. Since A is not closed in \mathbf{R}^2 , it follows from Theorem 6.21 that A is not compact.

(b) Let A be the set of points $(a, b, c, d) \in \mathbf{R}^4$ such that the points (0, 0), (a, b) and (c, d) are the vertices of a right-angled triangle in \mathbf{R}^2 whose area is equal to 1. Determine whether A is complete and whether A is compact.

Solution: Consider the triangle T in \mathbf{R}^2 with vertices at (0,0), (a,b) and (c,d). Triangle T has a right angle at (0,0), with area equal to 1, if and only if $(a,b) \cdot (c,d) = 0$, that is ac + bd = 0, and $\frac{1}{2}|(a,b)| |(c,d)| = 1$, that is $(a^2 + b^2)(c^2 + d^2) = 4$. Triangle T has a right angle at (a,b), with area equal to 1, if and only if $(a,b) \cdot ((c,d) - (a,b)) = 0$, that is a(c-a) + b(d-b) = 0, and $\frac{1}{2}|(a,b)| |(c,d) - (a,b)| = 1$, that is $(a^2 + b^2)((c-a)^2 + (d-b)^2) = 4$. Similarly, T has a right angle at (c,d) with area equal to 1 if and only if c(a-c) + d(b-d) = 0 and $(c^2 + d^2)((a-c)^2 + (b-d)^2) = 4$. Define $f, g, h, k, l, m : \mathbf{R}^4 \to \mathbf{R}$ by

$$f(a, b, c, d) = ac + bd,$$

$$g(a, b, c, d) = (a^{2} + b^{2})(c^{2} + d^{2}),$$

$$h(a, b, c, d) = a(c - a) + b(d - b),$$

$$k(a, b, c, d) = (a^{2} + b^{2})((c - a)^{2} + (d - b)^{2}),$$

$$\ell(a, b, c, d) = c(a - c) + d(b - d),$$

$$m(a, b, c, d) = (c^{2} + d^{2})((a - c)^{2} + (b - d)^{2}).$$

These functions are all continuous (they are polynomials). For $x = (a, b, c, d) \in \mathbf{R}^6$, we have

$$x \in A \iff (f(x) = 0 \text{ and } g(x) = 4) \text{ or } (h(x) = 0 \text{ and } k(x) = 4) \text{ or } (\ell(x) = 0 \text{ and } m(x) = 4)$$

and hence

$$A = B \cup C \cup D$$

where

$$B = \left\{ x \in \mathbf{R}^4 \middle| f(x) = 0 \text{ and } g(x) = 4 \right\} = f^{-1}(0) \cap g^{-1}(4),$$

$$C = \left\{ x \in \mathbf{R}^4 \middle| h(x) = 0 \text{ and } k(x) = 4 \right\} = h^{-1}(0) \cap k^{-1}(4),$$

$$D = \left\{ x \in \mathbf{R}^4 \middle| \ell(x) = 0 \text{ and } m(x) = 4 \right\} = \ell^{-1}(0) \cap m^{-1}(4).$$

Since f and g are continuous, and $\{0\}$ and $\{4\}$ are closed in \mathbf{R} , it follows from Part 2 of Theorem 5.29 (the topological characterization of continuity) that $f^{-1}(0)$ and $g^{-1}(4)$ are closed in \mathbf{R}^4 , and hence the set $B=f^{-1}(0)\cap g^{-1}(4)$ is closed in \mathbf{R}^4 by Part 2 of Theorem 4.36 (Basic Properties of Closed Sets). Similarly, the sets C and D are both closed, and hence the set $A=B\cup C\cup D$ is closed by Part 3 of Theorem 4.36. On the other hand, the set A is not bounded because for r>0 and $x=\left(r,0,0,\frac{2}{r}\right)$ we have $x\in A$ and $\|x\|=\sqrt{r^2+\frac{4}{r^2}}>r$. Since \mathbf{R}^4 is complete and A is closed in \mathbf{R}^4 , it follows (from Theorem 6.4) that A is complete, and since A is not bounded, it follows (from Theorem 6.21) that A is not compact.

2: (a) Let $M_2(\mathbf{R})$ be the set of 2×2 matrices with entries in \mathbf{R} and let $O_2(\mathbf{R}) = \{A \in M_2(\mathbf{R}) \mid A^T A = I\}$. Define $F : \mathbf{R}^4 \to M_2(\mathbf{R})$ by $F(x, y, z, w) = \begin{pmatrix} x & z \\ y & w \end{pmatrix}$ and let $A = \{(x, y, z, w) \in \mathbf{R}^4 \mid F(A) \in O_2(\mathbf{R})\}$. Show that A is compact.

Solution: For $(x, y, z, w) \in \mathbf{R}^4$ and A = F(A) we have

$$(x,y,z,w) \in A \iff F(A)^T F(A) = I \iff \begin{pmatrix} x^2 + y^2 & xz + yw \\ yw + yw & z^2 + w^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\iff \begin{pmatrix} x^2 + y^2 = 1 \text{ and } xz + yw = 0 \text{ and } z^2 + w^2 = 1 \end{pmatrix}.$$

Define $f, g, h : \mathbf{R}^4 \to \mathbf{R}$ by $f(x, y, z, w) = x^2 + y^2$, g(x, y, z, w) = xz + yw and $h(x, y, z, w) = z^2 + w^2$. Note that f, g and h are continuous (they are polynomials) and we have

$$A = f^{-1}(1) \cap g^{-1}(0) \cap h^{-1}(1).$$

Since $\{0\}$ and $\{1\}$ are closed in \mathbf{R} and f, g and h are continuous, it follows (from Part 2 of Theorem 5.29) that each of the sets $f^{-1}(1)$ and $g^{-1}(0)$ and $h^{-1}(1)$ are closed, and hence it follows (from Theorem 4.36) that $A = f^{-1}(1) \cap g^{-1}(0) \cap h^{-1}(1)$ is closed. Also note that A is bounded because when $u = (x, y, z, w) \in A$ we have $x^2 + y^2 = 1$ and $z^2 + w^2 = 1$ so that $||u|| = \sqrt{x^2 + y^2 + z^2 + w^2} = \sqrt{2}$. Since A is closed and bounded in \mathbf{R}^4 , it is compact by the Heine Borel Theorem.

(b) Recall from linear algebra (or verify) that the space $M_{n\times m}(\mathbf{R})$ of $n\times m$ matrices with entries in \mathbf{R} is an inner-product space with inner product given by $\langle A,B\rangle=\operatorname{trace}(B^TA)=\sum\limits_{k=1}^n\sum\limits_{\ell=1}^mA_{k,\ell}B_{k,\ell}$, and with standard orthonormal basis $\left\{E_{k,\ell}\,\middle|\,1\!\leq\! k\!\leq\! n,1\!\leq\! \ell\!\leq\! m\right\}$ where $E_{k,\ell}$ is the $n\times m$ matrix whose (k,ℓ) entry is equal to 1 and all other entries are zero, and the linear map $L=L_{n,m}:M_{n\times m}(\mathbf{R})\to\mathbf{R}^{nm}$ given by $L(E_{k,\ell})=e_{(k-1)n+\ell}$ is an inner product space isomorphism. Show that the set $S=\left\{A\in M_{n\times m}(\mathbf{R})\,\middle|\,A^TA=I\right\}$ is compact.

Solution: For $X \in M_{n \times m}(\mathbf{R})$, we have $(X^TX)_{k,\ell} = \sum_{j=1}^n (X^T)_{k,j} X_{j,\ell} = \sum_{j=1}^n X_{j,k} X_{j,\ell}$. Let $X \in S$. Then $X^TX = I$ so we have $(X^TX)_{\ell,\ell} = 1$ for all indices ℓ , that is $\sum_{k=1}^n (X_{k,\ell})^2 = 1$ for all $1 \le \ell \le m$. Thus we have $\|X\|^2 = \sum_{k=1}^n (X_{k,\ell})^2 = \sum_{\ell=1}^n 1 = n$ so that $\|X\| = \sqrt{n}$. Since $\|X\| = \sqrt{n}$ for all $X \in S$, S is bounded.

We claim that S is closed. Define $F: M_{n \times m} \to M_{m \times m}(\mathbf{R})$ by $F(X) = X^T X$ so that $S = F^{-1}(I)$, and let G be the composite $G = L_{m,m} F L_{n,m}^{-1} : \mathbf{R}^{nm} \to \mathbf{R}^m$. The map G is continuous if and only if each of its component maps $G_j : \mathbf{R}^{nm} \to \mathbf{R}$ is continuous. For $j = (k-1)m + \ell$ with $1 \le k, \ell \le m$, and for $x = (x_1, \dots, x_{n,m})^T \in \mathbf{R}^{n,m}$ and $X = L_{n,m}^{-1}(x)$ so that $X_{j,k} = x_{(j-1)n+k}$, we have

$$G_{j}(x) = (G(x))_{(k-1)m+\ell} = (L_{m,m}FL_{n,m}^{-1}(x))_{(k-1)m+\ell} = (L_{m,m}F(X))_{(k-1)m+\ell} = F(X)_{k,\ell}$$
$$= (X^{T}X)_{k,\ell} = \sum_{j=1}^{n} X_{j,k}X_{j,\ell} = \sum_{j=1}^{n} x_{(j-1)n+k} x_{(j-1)n+\ell}$$

so each component function G_j is continuous (it is a polynomial of degree 2) and hence G is continuous. Since G is continuous, so is $F = L_{m,m}^{-1}GL_{n,m}$. Since $F : M_{n \times m}(\mathbf{R}) \to M_{m \times m}(\mathbf{R})$ is continuous and $\{I\}$ is closed in $M_{m \times m}(\mathbf{R})$ (indeed if X is any metric space and $a \in X$ the $\{a\}$ is closed because if $b \in \{a\}^c$ so $b \neq a$ and r = d(a, b) > 0, then we have $a \notin B(b, r)$ so $B(b, r) \subseteq \{a\}^c$ hence $\{a\}^c$ is open), it follows that $S = F^{-1}(I)$ is closed in $M_{n \times m}(\mathbf{R})$, as claimed.

Finally, note that since S is closed and bounded in $M_{n\times m}(\mathbf{R})$, it follows (from Theorem 6.35) that S is compact.

3: (a) Show that $(\ell_{\infty}, d_{\infty})$ is complete.

Solution: Let $(a_n)_{n\geq 1}$ be a Cauchy sequence in ℓ_{∞} . For each $n\in \mathbf{Z}^+$, a_n is a bounded sequence of real numbers, say $a_n=(a_{n,k})_{k\geq 1}$. Fix an index $k\in \mathbf{Z}^+$ and let $\epsilon>0$. Since $(a_n)_{n\geq 1}$ is Cauchy in ℓ_{∞} , we can choose $N\in \mathbf{Z}^+$ such that $n,m\geq N\Longrightarrow \|a_n-a_m\|_{\infty}<\epsilon$. Then for $n,m\geq N$ we have $|a_{n,j}-b_{n,j}|<\epsilon$ for all $j\in \mathbf{Z}^+$ so, in particular, $|a_{n,k}-b_{n,k}|<\epsilon$. This shows that for each $k\in \mathbf{Z}^+$, the sequence $(x_{n,k})_{k\geq 1}$ is a Cauchy sequence in \mathbf{R} , so it converges. For each $k\in \mathbf{Z}^+$, let $b_k=\lim_{n\to\infty}b_{n,k}\in \mathbf{R}$, and then let $b=(b_k)_{k\geq 1}$.

We claim that $b \in \ell_{\infty}$ (that is, the sequence $b = (b_k)_{k \geq 1}$ is bounded in \mathbf{R}). Since $(a_n)_{n \geq 1}$ is Cauchy in ℓ_{∞} , it is bounded in ℓ_{∞} , so we can choose $M \geq 0$ such that $||a_n||_{\infty} \leq M$ for all indices $n \in \mathbf{Z}^+$. Then for all $k, n \in \mathbf{Z}^+$ we have $|a_{n,k}| \leq ||a_n||_{\infty} \leq M$ and hence, for all $k \in \mathbf{Z}^+$, $|b_k| = \left|\lim_{n \to \infty} b_{n,k}\right| = \lim_{n \to \infty} |b_{n,k}| \leq M$. Thus the sequence $(b_k)_{k \geq 1}$ is bounded in \mathbf{R} , that is $b \in \ell_{\infty}$, as claimed.

Finally, we claim that $a_n \to b$ in ℓ_{∞} . Let $\epsilon > 0$. Choose $N \in \mathbf{Z}^+$ so that $n, m \ge N \Longrightarrow \|a_n - a_m\|_{\infty} < \epsilon$. Then for $n, m \ge N$ we have $|a_{n,k} - a_{m,k}| < \epsilon$ for all indices $k \in \mathbf{Z}^+$. It follows that for all $n \ge N$ and for all $k \in \mathbf{Z}^+$ we have $|a_{n,k} - b_k| = \lim_{m \to \infty} |a_{n,k} - a_{m,k}| \le \epsilon$ and hence, for all $n \ge N$, we have $\|a_n - b\|_{\infty} \le \epsilon$. This shows that $a_n \to b$ in ℓ_{∞} , as claimed.

(b) Show that (ℓ_2, d_2) is complete.

Solution: Let $(x_n)_{n\geq 1}$ be a Cauchy sequence in (ℓ_2, d_2) , say $x_n = (x_{n,k})_{k\geq 1}$. Note that for each fixed $k \in \mathbf{Z}^+$, the sequence $(x_{n,k})_{n\geq 1}$ is Cauchy; indeed given $\epsilon > 0$ we can choose $N \in \mathbf{Z}^+$ so that for all $n, m \in \mathbf{Z}^+$ we have $n, m \geq N \Longrightarrow ||x_n - x_m||_2 < \epsilon$, and then for $n, m \geq N$ we have

$$|x_{n,k} - x_{m,k}| \le \left(\sum_{i=1}^{\infty} (x_{n,i} - x_{m,i})^2\right)^{1/2} = ||x_n - x_m||_2 < \epsilon.$$

Since $(x_{n,k})_{n\geq 1}$ is a Cauchy sequence in **R**, and since **R** is complete, this sequence converges. Let

$$a = (a_k)_{k \ge 1}$$
, where $a_k = \lim_{n \to \infty} x_{n,k}$.

We claim that $a \in \ell_2$, that is $\sum_{k=1}^{\infty} |a_k|^2 < \infty$. For $K \in \mathbf{Z}^+$ we have

$$\sum_{k=1}^{K} |a_k|^2 = \sum_{k=1}^{K} \left| \lim_{n \to \infty} x_{n,k} \right|^2 = \sum_{k=1}^{K} \lim_{n \to \infty} x_{n,k}^2 = \lim_{n \to \infty} \sum_{k=1}^{K} x_{n,k}^2 \le \lim_{n \to \infty} \sum_{k=1}^{\infty} x_{n,k}^2 = \lim_{n \to \infty} \left\| x_n \right\|_2^2,$$

so it suffices to show that the sequence $(\|x_n\|_2)$ converges in **R**. And since $\|x_n\|_2 - \|x_m\|_2 \le \|x_n - x_m\|_2$ (by the Triangle Inequality) we see that $(\|x_n\|_2)$ is Cauchy in **R**, so it does converge.

Finally, we claim that $x_n \to a$ in (ℓ_2, d_2) . Let $\epsilon > 0$. Choose $N \in \mathbf{Z}^+$ so that for all $n, m \in \mathbf{Z}^+$ we have

$$n, m \ge N \Longrightarrow ||x_n - x_m||_2 < \frac{\epsilon}{2}$$
, that is $\sum_{k=1}^{\infty} (x_{n,k} - x_{m,k})^2 < \frac{\epsilon^2}{4}$.

Let $n \in \mathbf{Z}^+$. Then for all $K \in \mathbf{Z}^+$ we have

$$\sum_{k=1}^{K} (x_{n,k} - a_k)^2 = \sum_{k=1}^{K} \left(x_{n,k} - \lim_{m \to \infty} x_{m,k} \right)^2 = \lim_{m \to \infty} \sum_{k=1}^{K} (x_{n,k} - x_{m,k})^2 \le \lim_{m \to \infty} \sum_{k=1}^{\infty} (x_{n,k} - x_{m,k})^2 \le \frac{\epsilon^2}{4}$$

and so

$$||x_n - a||_2 = \left(\sum_{k=1}^{\infty} (x_{n,k} - x_{m,k})^2\right)^{1/2} \le \frac{\epsilon}{2} < \epsilon.$$

4: For each of the following sets A, determine whether A is complete and whether A is compact.

(a)
$$A = \overline{B}_2(0,1) = \{a = (a_n)_{n>1} \in \ell_2 \mid ||a||_2 \le 1\} \subseteq \ell_2$$
, using the metric d_2 .

Solution: Let $E = \{e_1, e_2, e_3, \dots\}$, let $U_0 = \ell_2 \setminus E$, let $U_n = B(e_n, 1) = \{x \in \ell_2 | ||x - e_n||_2 < 1\}$ for $n \in \mathbf{Z}^+$. and let $\mathcal{U} = \{U_0, U_1, U_2, \dots\}$. Note that E is closed (because for all $k \neq \ell$ we have $||e_k - e_\ell||_2 = \sqrt{2}$, so every Cauchy sequence in E is eventually constant) and so U_0 is open, and so \mathcal{U} is an open cover of B. But \mathcal{U} has no finite subcover, indeed \mathcal{U} has no proper subcover, because the point $0 \in B$ only lies in the set U_0 and for each $k \in \mathbf{Z}^+$, the point $e_k \in B$ only lies in the set U_k (when $n \in \mathbf{Z}^+$ with $n \neq k$ we have $||e_k - e_n||_2 = \sqrt{2}$ so $e_k \notin B(e_n, 1) = U_n$).

(b)
$$A = \{a = (a_n)_{n \geq 1} \in \ell_1 \mid |a_n| \leq \frac{1}{n} \text{ for all } n \in \mathbf{Z}^+\} \subseteq \ell_1, \text{ using the metric } d_1.$$

Solution: We claim that A is closed in ℓ_1 . Let $a=(a_n)_{n\geq 1}\in A^c=\ell_1\setminus A$. Choose $m\in \mathbf{Z}^+$ so that $|a_m|>\frac{1}{m}$ and let $r=|a_m|-\frac{1}{m}$ and note that r>0. We claim that $B(a,r)\subseteq A^c$. Let $x=(x_n)_{n\geq 1}\in B(a,r)$. Since $|a_m|=\left|a_m-x_m+x_m\right|\leq |a_m-x_m|+|x_m|$, we have

$$|a_m| - |x_m| \le |a_m - x_m| \le \sum_{k=0}^{\infty} |a_k - x_k| = ||a - x||_1 < r = |a_m| - \frac{1}{m}$$

and hence $|x_m| > \frac{1}{m}$ so that $x \in A^c$. Thus $B(a,r) \subseteq A^c$, showing that that A^c is open, hence A is closed, as claimed. Since ℓ_1 is complete and A is closed in ℓ_1 , it follows that A is complete. On the other hand, A is not bounded because given r > 0, since $\sum_{k=1}^{\infty} \frac{1}{k} = \infty$ we can choose $n \in \mathbf{Z}^+$ such that $\sum_{k=1}^{n} \frac{1}{k} > r$, and then we can

let $x \in \ell_1$ be given by $x = \sum_{k=1}^n \frac{1}{k} e_k = \left(\frac{1}{1}, \frac{1}{2}, \dots, \frac{1}{n}, 0, 0, \dots\right)$, and then we have $x \in A$ but $||x||_1 = \sum_{k=1}^n \frac{1}{k} > r$. Since A is not bounded, it is not compact.

(c)
$$A = \left\{ a = (a_n)_{n \ge 1} \in \ell_2 \mid |a_n| \le \frac{1}{n+1} \text{ for all } n \in \mathbf{Z}^+ \right\} \subseteq \ell_2$$
, using the metric d_2 .

Solution: We claim that A is closed in (ℓ_2, d_2) , and hence A is complete since (ℓ_2, d_2) is complete. Let $a = \langle a_n \rangle \in \ell_2 \setminus A$. Choose $N \in \mathbb{N}$ so that $|a_N| > \frac{1}{N+1}$. Let $r = |a_N| - \frac{1}{N+1}$. We claim that $B(a, r) \cap A = \emptyset$. Let $b = \langle b_n \rangle \in B(a, r)$. Then we have

$$|a_N| - |b_N| \le |b_N - a_N| \le \sqrt{\sum_{n=0}^{\infty} (b_n - a_n)^2} = |b - a|_2 < r = |a_N| - \frac{1}{N+1}$$

so $|b_N| > \frac{1}{N+1}$, and hence $b \notin B(a,r)$. Thus A is closed in (ℓ_2, d_2) , hence complete.

We claim that A is totally bounded. Let $\epsilon>0$. Choose $N\in \mathbf{N}$ so that $\sum\limits_{n=N}^{\infty}\left(\frac{1}{N+1}\right)^2<\frac{\epsilon^2}{2}$, and then let $\delta=\sqrt{\frac{\epsilon^2}{2N}}$. For each $n=0,1,\cdots,N-1$ choose points $t_{n,1},t_{n,2},\cdots,t_{n,m_n}\in \left[-\frac{1}{n+1},\frac{1}{n+1}\right]$ such that $\left[-\frac{1}{n+1},\frac{1}{n+1}\right]\subset\bigcup_{i=1}^{m_n}B(t_{n,i},\delta)$, then let $A_n=\{t_{n,1},t_{n,2},\cdots,t_{n,m_n}\}$. Let $P=A_0\times A_1\times\cdots\times A_{N-1}$. For each $\alpha=\left(\alpha_0,\alpha_1,\cdots,\alpha_{N-1}\right)\in P$, Let $a_\alpha=\langle a_{\alpha,n}|n\in \mathbf{N}\rangle$ be the sequence $a_\alpha=\langle \alpha_0,\alpha_1,\alpha_2,\cdots,\alpha_{N-1},0,0,0,\cdots\rangle$. We claim that $A\subset\bigcup_{\alpha\in P}B(a_\alpha,\epsilon)$, and hence A is totally bounded. Let $b=\langle b_n\rangle\in A$. For each n< N choose $\alpha_n\in A_n$ so that $b_n\in B(\alpha_n,\delta)$, then let $\alpha=(\alpha_0,\alpha_1,\cdots,\alpha_{N-1})\in P$. Then we have

$$|b - a_{\alpha}|_2 = \sqrt{\sum_{n=0}^{\infty} (b_n - a_{\alpha,n})^2} = \sqrt{\sum_{n=0}^{N-1} (b_n - \alpha_n)^2 + \sum_{n=N}^{\infty} b_n^2}$$

$$\leq \sum_{n=0}^{N-1} \delta^2 + \sum_{n=N}^{\infty} \left(\frac{1}{N+1}\right)^2 < \sqrt{N\delta^2 + \frac{\epsilon^2}{2}} = \epsilon.$$

Thus $b \in B(\alpha_n, \epsilon)$, so A is totally bounded. Since A is complete and totally bounded, A is compact.

5: (a) Show that the closed unit ball $\overline{B}_{\infty}(0,1)$ is not compact in $\mathcal{C}[0,1]$, using the metric d_{∞} .

Solution: Let $p(x) = \begin{cases} 1 - x^2 \text{, for } |x| \leq 1 \\ 0 \text{, for } |x| \geq 1. \end{cases}$ For each $n \in \mathbb{N}$ let $f_n(x) = p\left(2^{n+2}\left(x - \frac{1}{2^n}\right)\right)$, so that $f_n(x)$ is a continuous bump function of height 1 centred at $\frac{1}{2^n}$ of width $\frac{1}{2^{n+1}}$ (so the bumps of f_n and f_m do not

is a continuous bump function of height 1 centred at $\frac{1}{2^n}$ of width $\frac{1}{2^{n+1}}$ (so the bumps of f_n and f_m do not overlap when $n \neq m$). We have $||f_n||_{\infty} = f_n(\frac{1}{2^n}) = 1$ so that $f_n \in \overline{B}(0,1)$. Notice that for $n \neq m$ we have $||f_n - f_m||_{\infty} = 1$ (since $f_n(\frac{1}{2^n}) = 1$ and $f_m(\frac{1}{2^n}) = 0$ and $f_n(x), f_m(x) \in [0,1]$ for all x), so no subsequence of (f_n) converges uniformly on [0,1], that is no subsequence of (f_n) converges in the metric space C[0,1] using d_{∞} . Thus C[0,1] is not compact by Part 3 of Theorem 6.38.

(b) Show that $\mathcal{C}[-1,1]$ is not complete using the metric d_1

Solution: For each $n \in \mathbf{Z}^+$, define $f_n : [-1,1] \to \mathbf{R}$ by $f_n(x) = x^{\frac{1}{2n-1}}$. Note that each f_n is continuous on [-1,1], and the sequence $(f_n)_{n\geq 1}$ is Cauchy in $(\mathcal{C}[-1,1],d_1)$ because for $m\geq n\geq N$ we have

$$||f_n - f_m||_1 = \int_{x=-1}^1 |f_n(x) - f_m(x)| dx = 2 \int_{x=0}^1 x^{\frac{1}{2m-1}} - x^{\frac{1}{2n-1}} dx$$
$$= 2 \left[\frac{2m-1}{2m} x^{\frac{2m+1}{2m-1}} - \frac{2n-1}{2n} x^{\frac{2n+1}{2n-1}} \right]_{x=0}^1 = \frac{2m-1}{m} - \frac{2n-1}{n} = \frac{1}{n} - \frac{1}{m} \le \frac{1}{N}.$$

Note that for each $x \in [-1,1]$ we have $\lim_{n\to\infty} f_n(x) = g(x)$ in \mathbf{R} where g(x) = -1 for x < 0, g(x) = 1 for x > 0 and g(0) = 0 (so we have $f_n \to g$ pointwise on [-1,1]). Suppose, for a contradiction, that $(f_n)_{n\geq 1}$ converges in $\mathcal{C}[-1,1]$, and let $h = \lim_{n\to\infty} f_n$ in $\mathcal{C}[-1,1]$. Note that the restriction of h to [0,1] is continuous. Let $\epsilon > 0$. Choose $n \in \mathbf{Z}^+$ such that $||f_n - h||_1 < \frac{\epsilon}{2}$ and also $\frac{1}{2n} < \frac{\epsilon}{2}$. Then

$$\int_{x=0}^{1} |h(x) - 1| dx \le \int_{x=0}^{1} |h(x) - f_n(x)| + |f_n(x) - 1| dx \le \int_{x=-1}^{1} |h(x) - f_n(x)| dx + \int_{x=0}^{1} |f_n(x) - 1| dx$$

$$= \|h - f_n\|_1 + \int_{x=0}^{1} 1 - x^{\frac{1}{2n-1}} dx = \|h - f_n\|_1 + \frac{1}{2n} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Since $\int_{x=0}^{1} |h(x) - 1| dx < \epsilon$ for every $\epsilon > 0$, it follows that $\int_{x=0}^{1} |h(x) - 1| dx = 0$ and, since the function h(x) - 1 is continuous on [0, 1], it follows that h(x) - 1 = 0 for all $x \in [0, 1]$. Thus we have h(x) = 1 for all $x \in [0, 1]$. A similar argument shows that h(x) = -1 for all $x \in [-1, 0]$. But this is not possible since we cannot have h(0) = 1 and h(0) = -1.

6: (a) Let X be a metric space, let $A \subseteq X$ be compact, and let S be an open cover for A in X. Show that there exists r > 0 with the property that for every $a \in A$ there exists $U \in S$ such that $B(a, r) \subseteq U$.

Solution: For each $a \in A$, since S is an open cover for A we can choose $U_a \in S$ with $a \in U_a$ and then, since U_a is open we can choose $r_a > 0$ so that $B(a, 2r_a) \subseteq U_a$. Note that the set $T = \{B(a, r_a) | a \in A\}$ is an open cover for A. Since A is compact, we can choose a finite subcover, say $\{B(a_1, r_{a_1}), \dots, B(a_n, r_{a_n})\}$ of T for A, with each $a_i \in A$. Let $r = \min\{r_{x_1}, \dots, r_{x_n}\}$. We claim that for every $a \in A$ there exists $U \in S$ such that $B(a, r) \subseteq U$. Let $a \in A$. Choose an index k such that $a \in B(a_k, r_{a_k})$, and let $U = U_{a_k} \in S$. For all $x \in B(a, r)$ we have $d(x, a_k) \leq d(x, a) + d(a, a_k) \leq r + r_{a_k} \leq 2r_{a_k}$ and hence $x \in B(a_k, 2r_{a_k}) \subseteq U_{a_k} = U$. This shows that $B(a, r) \subseteq U$, as required.

(b) Let X be a compact metric space. Let $(f_n)_{n\geq 1}$ be a sequence in $\mathcal{C}(X)$ which converges pointwise to a function $f\in\mathcal{C}(X)$. Show that if $(f_n(x))_{n\geq 1}$ is increasing for every $x\in X$, then the convergence is uniform.

Solution: Let $g_n(x) = f(x) - f_n(x)$. Then $(g_n(x))$ is decreasing for all $x \in X$ and $g_n \to 0$ pointwise on X. We need to show that $g_n \to 0$ uniformly. Let $\epsilon > 0$. For each $a \in X$, since $g_n(a) \to 0$ we can choose n_a so that $g_{n_a}(a) < \frac{\epsilon}{2}$, and then since g_{n_a} is continuous we can choose $\delta_a > 0$ so that for all $x \in X$ we have

$$d(x,a) < \delta_a \Longrightarrow |g_{n_a}(x) - g_{n_a}(a)| < \frac{\epsilon}{2}$$
.

Then for all $x \in X$ with $d(x, a) < \delta_a$ we have $|g_{n_a}(x)| \le |g_{n_a}(x) - g_{n_a}(a)| + |g_{n_a}(a)| < \epsilon$. Let $x \in X$ and let $n \ge N$. Choose i so that $x \in B(a_i, \delta_{a_i})$. Since $(g_n(x))$ is decreasing and $n \ge N \ge N_i$, we have $g_n(x) \le g_{n_i}(x) < \epsilon$. Thus $g_n \to 0$ uniformly on X, as required.

(c) Show that the requirements in Part (b) that X is compact and that (f_n) is increasing are both necessary. Solution: To see that the requirement that X is compact is necessary, take X = (0,1) and let $f_n(x) = -x^n$. Then $(f_n(x))$ is increasing for all $x \in (0,1)$ and $f_n \to 0$ pointwise in (0,1), but the convergence is not uniform.

To see that the requirement that $(f_n(x))$ is increasing is necessary, take X = [0,1] and let f_n be the bump functions used in 5(a). Then $f_n \to 0$ pointwise on [0,1], but the convergence is not uniform.

7: (Absolute convergence implies convergence) Let X be a normed linear space. For a sequence $(x_k)_{k\geq 1}$ in X, the n^{th} partial sum of $(x_k)_{k\geq 1}$ is the element $s_n = \sum_{k=1}^n x_k \in X$, the series $\sum_{k=1}^\infty x_k$ is, by definition, equal to the sequence of partial sums $(s_n)_{n\geq 1}$, we say the series $\sum_{k=1}^\infty x_k$ converges in X when the sequence of partial sums $(s_n)_{n\geq 1}$ converges in X and then the sum of the series (also denoted by $\sum_{k=1}^\infty x_k$) is defined to be the limit of the sequence of partial sums in X. Show that X is complete if and only if X has the property that for every sequence $(x_k)_{k\geq 1}$ in X, if $\sum_{k=1}^\infty \|x_k\|$ converges in X then $\sum_{k=1}^\infty x_k$ converges in X.

Solution: Suppose that X is complete. Let $(x_k)_{k\geq 1}$ be a sequence in X such that $\sum_{k=1}^{\infty} \|x_k\|$ converges in \mathbf{R} . For each $n\in\mathbf{Z}^+$, let $t_n=\sum_{k=1}^n\|x_k\|\in\mathbf{R}$ and let $s_n=\sum_{k=1}^nx_k\in X$. Let $\epsilon>0$. Since $\sum_{k=1}^n\|x_k\|$ converges in \mathbf{R} , the sequence $(t_n)_{n\geq 1}$ is Cauchy in \mathbf{R} , so we can choose $N\in\mathbf{Z}^+$ such that for $m>n\geq N$ we have $\sum_{k=n+1}^m\|x_k\|=|t_m-t_n|<\epsilon$. Then for $m>n\geq N$ we have $\|s_m-s_n\|=\|\sum_{k=n+1}^mx_k\|\leq\sum_{k=n+1}^m\|x_k\|<\epsilon$. This shows that the sequence $(s_n)_{n\geq 1}$ is Cauchy in X, and so it converges in X because X is complete.

Suppose, conversely, that X has the property that for every sequence $(y_k)_{k\geq 1}$ in X, if $\sum_{k=1}^{\infty} \|y_k\|$ converges in \mathbb{R} then $\sum_{k=1}^{\infty} y_k$ converges in X. Let $(x_n)_{n\geq 1}$ be a Cauchy sequence in X. Since $(x_n)_{n\geq 1}$ is Cauchy, we can choose $n_1\in \mathbb{Z}^+$ such that $k,\ell\geq n_1\Longrightarrow \|x_k-x_\ell\|<\frac{1}{2}$, then we can choose $n_2>n_1$ such that $k,\ell\geq n_2\Longrightarrow \|x_k-x_\ell\|<\frac{1}{2^2}$, then we can choose $n_3>n_2$ so that $k,\ell\geq n_3\Longrightarrow \|x_k-x_\ell\|<\frac{1}{2^3}$ and so on, to obtain integers n_k with $1\leq n_1< n_2< n_3<\cdots$ such that $i,j\geq n_k\Longrightarrow \|x_i-x_j\|<\frac{1}{2^k}$. For each $k\in \mathbb{Z}^+$, let $y_k=x_{n_{k+1}}-x_{n_k}$. Note that

$$\sum_{k=1}^{\infty} \|y_k\| = \sum_{k=1}^{\infty} \|x_{n_{k+1}} - x_{n_k}\| < \sum_{k=1}^{\infty} \frac{1}{2^k} = 1.$$

Since $\sum_{k=1}^{\infty} ||y_k||$ converges in **R**, it follows that $\sum_{k=1}^{\infty} y_k$ converges in X. For each $\ell \in \mathbf{Z}^+$, let s_ℓ be the ℓ^{th} partial sum

$$s_{\ell} = \sum_{k=1}^{\ell} y_k = \sum_{k=1}^{\ell} (x_{n_{k+1}} - x_{n_k}) = x_{n_{\ell+1}} - x_{n_1}$$

and note that $x_{n_\ell} = s_{\ell-1} + x_{n_1}$ for $\ell \geq 2$. Since the series $\sum_{k=1}^{\infty} y_k$ converges in X, its sequence of partial sums $(s_\ell)_{\ell \geq 1}$ converges in X, and hence the sequence $(x_{n_\ell})_{\ell \geq 1}$ converges in X. Since $(x_n)_{n \geq 1}$ is a Cauchy sequence, and the subsequence $(x_{n_\ell})_{\ell \geq 1}$ converges, it follows that $(x_n)_{n \geq 1}$ converges by Theorem 4.11.

(a) Show that X is complete if and only if every decreasing sequence of closed balls

$$\overline{B}(a_1,r_1) \supset \overline{B}(a_2,r_2) \supset \overline{B}(a_3,r_3) \supset \cdots$$

in X with $r_n \to 0$ has a non-empty intersection.

Solution: Suppose that X is complete. Let $\overline{B}(a_1, r_1) \supset \overline{B}(a_2, r_2) \supset \overline{B}(a_3, r_3) \supset \cdots$ be a decreasing sequence of balls in X with $r_n \to 0$. We claim that $\langle a_n \rangle$ is Cauchy. Let $\epsilon > 0$. Choose $N \in \mathbb{N}$ so that $r_N \leq \frac{\epsilon}{2}$. For $n, m \in \mathbb{N}$ with $n, m \geq N$ we have $a_n, a_m \in B(a_N, r_N)$ so that $d(a_n, a_m) \leq d(a_n, a_N) + d(a_N, a_m) < 2r_N \leq \epsilon$, and so $\langle a_n \rangle$ is Cauchy as claimed. Since X is complete, $\langle a_n \rangle$ converges in X. Let $a = \lim_{n \to \infty} a_n$. Note that

 $a \in \bigcap_{n=1}^{\infty} \overline{B}(a_n, r_n)$ since for each $N \in \mathbf{N}$, the sequence $\langle a_n | n \geq N \rangle$ lies in $\overline{B}(a_N, r_N)$ which is closed in X and hence complete, and so $a \lim_{n \to \infty} a_n \in \overline{B}(a_N, r_N)$.

Conversely, suppose that every decreasing sequence of balls $\overline{B}(a_1, r_1) \supset \overline{B}(a_2, r_2) \supset \overline{B}(a_3, r_3) \supset \cdots$ with $r_n \to 0$ has non-empty intersection. Let $\langle a_n \rangle$ be a Cauchy sequence in X. Choose $n_0 \geq 0$ so that for all $n, m \in \mathbb{N}$ we have $n, m \geq n_0 \Longrightarrow d(a_n, a_m) < \frac{1}{2}$. Having chosen $n_0 < n_1 < \cdots < n_{k-1}$, choose $n_k > n_{k-1}$ so that for all $n, m \in \mathbb{N}$ we have $n, m \geq n_k \Longrightarrow d(a_n, a_m) < \frac{1}{2^{k+1}}$. Note that $\overline{B}(a_{n_k}, \frac{1}{2^k}) \subset \overline{B}(a_{n_{k-1}}, \frac{1}{2^{k-1}})$ since

$$d(x, a_{n_k}) \le \frac{1}{2^k} \Longrightarrow d(x, a_{n_{k-1}}) \le d(x, a_{n_{k-1}}) + d(a_{n_{k1}}, a_{n_{k-1}}) < \frac{1}{2^k} + \frac{1}{2^k} = \frac{1}{2^{k-1}}.$$

Since this decreasing sequence of closed balls has non-empty intersection, we can choose $a \in \bigcap_{n=1}^{\infty} \overline{B}(a_{n_k}, \frac{1}{2^k})$.

Note that $a_{n_k} \to a$ in X since given $\epsilon > 0$ we can choose $K \in \mathbb{N}$ so that $\frac{1}{2^{k-1}} < \epsilon$ and then for $k \ge K$ we have $d\left(a_{n_k}, a_{n_K}\right) < \frac{1}{2^{K+1}}$ by the choice of n_K , and we have $a \in \overline{B}\left(a_{n_K}, \frac{1}{2^K}\right)$ so that $d(a, a_{n_K}) \le \frac{1}{2^K}$, and so $d\left(a_{n_k}, a\right) \le d\left(a_{n_k}, a_{n_K}\right) + d\left(a_{n_K}, a\right) < \frac{1}{2^{K+1}} + \frac{1}{2^K} < \frac{1}{2^{K-1}} < \epsilon$. Finally note that since $\langle a_n \rangle$ is Cauchy and has a convergent subsequence, $\langle a_n \rangle$ converges.

(b) Show that the requirement in part (a) that $r_n \to 0$ is necessary.

Solution: Let $X = \left\{ \frac{1}{2^n} \middle| n \in \mathbf{N} \right\}$. Define $d: X \times X \to [0, \infty)$ by

$$d(x,y) = \begin{cases} 0 & \text{, if } x = y \\ 1 + |x - y| & \text{, if } x \neq y. \end{cases}$$

Then d is clearly positive definite and symmetric, and by considering that cases $x=y=z, \ x=y\neq z, \ x=z\neq y, \ y=z\neq x$ and x,y,z all distinct, we see that d satisfies the triangle equality, so d is a metric on X. Under this metric, X is complete since if a sequence in X is Cauchy, then it must be eventually constant, so it converges. But if we take $a_n=\frac{1}{2^n}$ and $r_n=1+\frac{1}{2^n}$, then we have $\overline{B}(a_n,r_n)=\left\{\frac{1}{2^k}\left|k\geq n-1\right.\right\}$, so $\overline{B}(a_1,r_1)\supset \overline{B}(a_2,r_2)\supset \overline{B}(a_3,r_3)\supset \cdots$ but $\bigcap_{n=1}^\infty \overline{B}(a_n,r_n)=\emptyset$.