AMATH/PMATH 331 Real Analysis, Problems for Chapter 5

1: Let X and Y be metric spaces.

(a) Let A and B be closed sets in X with $X = A \cup B$, let $f : A \to Y$ and $g : B \to Y$ be continuous with f(x) = g(x) for all $x \in A \cap B$, and define $h : X \to Y$ by

$$h(x) = \begin{cases} f(x) , \text{ for } x \in A, \\ g(x) , \text{ for } x \in B. \end{cases}$$

Show that h is continuous.

(b) Let A be a dense subset of X and let $f, g: X \to Y$ be continuous maps with f(x) = g(x) for all $x \in A$. Show that f(x) = g(x) for all $x \in X$.

2: Let X and Y be metric spaces, and let $f: X \to Y$.

- (a) Show that f is continuous if and only if for every $B \subseteq Y$ we have $f^{-1}(B^{\circ}) \subseteq f^{-1}(B)^{\circ}$.
- (b) Show that f is continuous if and only if for every $A \subseteq X$ we have $f(\overline{A}) \subseteq \overline{f(A)}$.
- **3:** (a) Determine whether $G: (\mathcal{C}[0,1], d_1) \to (\mathbf{R}, d_2)$ given by G(f) = f(0) is continuous.
 - (b) Determine whether $H: (\mathcal{C}[0,1], d_2) \to (\mathbf{R}, d_2)$ given by $H(f) = \int_0^1 f(x) dx$ is continuous.