AMATH/PMATH 331 Real Analysis, Problems for Chapter 4

- 1: Determine which of the following functions $d: \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ are metrics on \mathbf{R} .
 - (a) $d(x,y) = (x-y)^2$
 - (b) $d(x, y) = \sqrt{|x y|}$
 - (c) $d(x,y) = |x^2 y^2|$
 - (d) $d(x,y) = \frac{|x-y|}{1+|x-y|}$
- **2:** (a) Let $S = \{(x, y) \in \mathbf{R}^2 | y > x^2 \}$. Prove, from the definition of an open set, that S is open in \mathbf{R}^2 .
 - (b) Define $f: \mathbf{R} \to \mathbf{R}^2$ by $f(t) = \left(\frac{2t}{t^2+1}, \frac{t^2-1}{t^2+1}\right)$. Show that Range(f) is not closed in \mathbf{R}^2 .
- **3:** Determine which of the following statements are true for every metric space (X,d) and every $A \subseteq X$.
 - (a) $\overline{B(a,r)} = \overline{B}(a,r)$ for every $a \in X$ and every r > 0.
 - (b) $(\overline{A})^c = (A^c)^\circ$.
 - (c) If $A = A^{\circ}$ then $A = (\overline{A})^{\circ}$.
 - (d) If $A = \overline{A}$ then $\partial(\partial A) = \partial A$.
- **4:** (a) Show that there is no inner product on \mathbb{R}^2 which induces the 1-norm $\| \ \|_1$.
 - (b) Let $T = \{U \subseteq \mathbf{R} \mid U = \emptyset \text{ or } \mathbf{R} \setminus U \text{ is finite}\}$. Show that T is a topology on \mathbf{R} which is not induced by any metric on \mathbf{R} (T is called the *cofinite topology* on \mathbf{R}).
- **5:** (a) Show that ℓ_1 is neither open nor closed in the metric space $(\ell_{\infty}, d_{\infty})$.
 - (b) Determine whether every set $U \subseteq \ell_1$ which is open in (ℓ_1, d_2) is also open in (ℓ_1, d_1) .
 - (c) Determine whether every set $U \subseteq \ell_1$ which is open in (ℓ_1, d_1) is also open in (ℓ_1, d_2) .