AMATH/PMATH 331 Real Analysis, Solutions to the Problems for Chapter 3

1: For each of the following sequences of functions (f_n) , find the set A of points $x \in \mathbf{R}$ for which $(f_n(x))$ converges, and find the (pointwise) limit function $f(x) = \lim_{n \to \infty} f_n(x)$ for $x \in A$.

(a)
$$f_n(x) = (\sin x)^n$$

Solution: If $x = \frac{\pi}{2} + 2\pi k$ for some $k \in \mathbf{Z}$ then $\sin x = 1$ and so $f_n(x) = 1$ for all n, and so $\lim_{n \to \infty} f_n(x) = 1$. If $x = -\frac{\pi}{2} + 2\pi k$ for some $k \in \mathbf{Z}$ then $\sin x = -1$ so $f_n(x) = (-1)^n$ and so $\lim_{n \to \infty} f_n(x)$ does not exist. If $x \neq \frac{\pi}{2} + \pi k$ for any $k \in \mathbf{Z}$ then $|\sin x| < 1$ so $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} (\sin x)^n = 0$. Thus the limit function is

$$f(x) = \begin{cases} 0 \text{ , if } x \neq \frac{\pi}{2} + \pi k \text{ for any } k \in \mathbf{Z} \\ 1 \text{ , if } x = \frac{\pi}{2} + 2\pi k \text{ for some } k \in \mathbf{Z} \end{cases}$$

and f(x) is not defined when $x = -\frac{\pi}{2} + 2\pi k$ for some $k \in \mathbf{Z}$.

(b)
$$f_n(x) = (\sin x)^{1/(2n+1)}$$

Solution: If $x = \pi k$ for some $k \in \mathbf{Z}$ then $\sin x = 0$ so $f_n(x) = 0$ and so $\lim_{n \to \infty} f_n(x) = 0$. If $x \in (2\pi k, \pi(2k+1))$ for some $k \in \mathbf{Z}$ then $0 < \sin x \le 1$ and so $\lim_{n \to \infty} f_n(x) = 1$. If $x \in (\pi(2k-1), 2\pi k)$ for some $k \in \mathbf{Z}$ then $-1 \le \sin x < 0$ and so $\lim_{n \to \infty} f_n(x) = -1$. Thus the limit function is

$$f(x) = \begin{cases} 0, & \text{if } x = \pi k \\ 1, & \text{if } x \in (2\pi k, \pi(2k+1)) \\ -1, & \text{if } x \in (\pi(2k-1), 2\pi k) \end{cases}$$

2: (a) Find
$$\int_0^1 \lim_{n \to \infty} nx(1-x^2)^n dx$$
 and $\lim_{n \to \infty} \int_0^1 nx(1-x^2)^n dx$.

Solution: Let $x \in [0,1]$. If x=0 or x=1 then $nx(1-x^2)^n=0$ for all n and so $\lim_{n\to\infty} nx(1-x^2)^n=0$. If $x\in (0,1)$ then $0<(1-x^2)<1$, so the series $\sum_{n\to\infty} nx(1-x^2)^n$ converges by the Ratio Test and so $\lim_{n\to\infty} nx(1-x^2)^n=0$ by the Divergence Test. Thus $\int_0^1 \lim_{n\to\infty} nx(1-x^2)^n dx=\int_0^1 0 dx=0$. On the other hand, using the substitution $u=1-x^2$ so $du=-2x\,dx$ we have

$$\int_0^1 nx(1-x^2)^n dx = \int_1^0 -\frac{1}{2}n u^2 du = \left[\frac{-n u^{n+1}}{2(n+1)}\right]_1^0 = \frac{n}{2(n+1)},$$

and so we have $\lim_{n\to\infty} \int_0^1 nx(1-x^2)^n dx = \frac{1}{2}$.

(b) Find
$$\int_1^4 \lim_{n \to \infty} \frac{\tan^{-1}(nx)}{x} dx$$
 and $\lim_{n \to \infty} \int_1^4 \frac{\tan^{-1}(nx)}{x} dx$.

Solution: Let $x \in [1,4]$. Then $\lim_{n \to \infty} \frac{\tan^{-1}(nx)}{x} = \frac{\pi}{2x}$ and so

$$\int_{1}^{4} \lim_{n \to \infty} \frac{\tan^{-1}(nx)}{x} dx = \int_{1}^{4} \frac{\pi}{2x} dx = \left[\frac{\pi}{2} \ln x\right]_{1}^{4} = \pi \ln 2.$$

We claim that $\left\{\frac{\tan^{-1}(nx)}{x}\right\} \to \frac{\pi}{2x}$ uniformly on [1,4]. Indeed, given $\epsilon > 0$ we can choose N so that $x \geq N \Longrightarrow \left|\tan^{-1}x - \frac{\pi}{2}\right| < \epsilon$ for all $x \geq N$. Then for $n \geq N$ and $x \geq 1$ we have

$$\left| \frac{\tan^{-1}(nx)}{x} - \frac{\pi}{2x} \right| = \frac{\left| \tan^{-1}(nx) - \frac{\pi}{2} \right|}{x} < \frac{\epsilon}{x} \le \epsilon.$$

Since the convergence is uniform, $\lim_{n\to\infty} \int_1^4 \frac{\tan^{-1}(nx)}{x} dx = \int_1^4 \lim_{n\to\infty} \frac{\tan^{-1}(nx)}{x} dx = \pi \ln 2.$

(c) Show that
$$\sum_{n=0}^{\infty} \frac{\cos(2^n x)}{1+n^2}$$
 converges uniformly on **R** and find $\int_0^{\pi/4} \sum_{n=0}^{\infty} \frac{\cos(2^n x)}{1+n^2} dx$.

Solution: For all $x \in \mathbf{R}$ we have $\left|\frac{\cos(2^n x)}{1+n^2}\right| \le \frac{1}{1+n^2} < \frac{1}{n^2}$, and $\sum \frac{1}{n^2}$ converges, so $\sum_{n=0}^{\infty} \frac{\cos(2^n x)}{1+n^2}$ converges uniformly by the Weirstrass M-Test. Since the convergence is uniform,

$$\int_0^{\pi/4} \sum_{n=0}^{\infty} \frac{\cos(2^n x)}{1+n^2} dx = \sum_{n=0}^{\infty} \int_0^{\pi/4} \frac{\cos(2^n x)}{1+n^2} dx = \sum_{n=0}^{\infty} \left[\frac{1}{2^n} \frac{\sin(2^n x)}{1+n^2} \right]_0^{\pi/4} = \frac{\sqrt{2}}{2} + \frac{1}{4} + 0 + 0 + \dots = \frac{\sqrt{2}}{2} + \frac{1}{4}.$$

- **3:** Suppose that (f_n) and (g_n) converge uniformly on $A \subseteq \mathbf{R}$.
 - (a) Show that if f and g are bounded on A then (f_ng_n) converges uniformly on A.

Solution: Let $f = \lim_{n \to \infty} f$ and $g = \lim_{n \to \infty} g_n$, and suppose that f and g are bounded on A, say $|f(x)| \le M$ and $|g(x)| \le M$ for all $x \in A$. Choose N_1 so that $n \ge N_1 \Longrightarrow |f_n(x) - f(x)| < 1$ for all $x \in A$. Note that for $n \ge N_1$ we have $|f_n(x)| \le |f_n(x) - f(x)| + |f(x)| \le M + 1$. Now choose $N \ge N_1$ so that when $n \ge N$ we have $|f_n(x) - f(x)| < \frac{\epsilon}{2M}$ and $|g_n(x) - g(x)| < \frac{\epsilon}{2(M+1)}$ for all $x \in A$. Then when $n \ge N$, for all $x \in A$ we have

$$|f_n(x)g_n(x) - f(x)g(x)| \le |f_n(x)g_n(x) - f_n(x)g(x)| + |f_n(x)g(x) - f(x)g(x)|$$

$$= |f_n(x)||g_n(x) - g(x)| + |f_n(x) - f(x)||g(x)|$$

$$\le (M+1)\frac{\epsilon}{2(M+1)} + \frac{\epsilon}{2M}M = \epsilon.$$

Thus $f_n g_n \to fg$ uniformly on A.

 $x \in [a,b].$

(b) Show that if f and g are not bounded then (f_ng_n) does not necessarily converge uniformly on A.

Solution: Let $A = \mathbf{R}$, let f(x) = g(x) = x and let $f_n(x) = g_n(x) = x + \frac{1}{n}$. Then $f_n(x)^2 = x^2 + \frac{2x}{n} + \frac{1}{n^2}$ so $\lim_{n \to \infty} f_n(x)^2 = x^2 = f(x)^2$ for all $x \in \mathbf{R}$, but the convergence is not uniform, since given any positive integer n, when $x \ge n$ we have $|f_n(x)|^2 = f(x)^2 = \frac{2x}{n} + \frac{1}{n^2} > 2$.

- 7: Determine which of the following statements are true for all sequences of functions (f_n) .
 - (a) If (f_n) converges uniformly on (a, b) and pointwise on [a, b] then (f_n) converges uniformly on [a, b]. Solution: This is true. Indeed, suppose that (f_n) converges uniformly in (a, b) and that $(f_n(a))$ and $(f_n(b))$ both converge. Then given $\epsilon > 0$ we can choose N so that when $l, m \ge N$ we have $|f_l(x) - f_m(x)| < \epsilon$ for all $x \in (0, 1)$, and $|f_l(a) - f_m(a)| < \epsilon$ and $|f_l(b) = f_m(b)| < \epsilon$, and so we have $|f_l(x) - f_m(x)| < \epsilon$ for all
 - (b) If each f_n is continuous on [a,b] and $\sum f_n$ converges uniformly on [a,b] then $\sum M_n$ converges, where $M_n = \max\{|f_n(x)||a \le x \le b\}$.

Solution: This is false. For a counterexample, let

$$f_n(x) = \begin{cases} \frac{1}{n} \sin^2(2^n \pi x), & \text{if } \frac{1}{2^n} \le x \le \frac{1}{2^{n-1}} \\ 0, & \text{otherwise.} \end{cases}$$

Then $M_n = \frac{1}{n}$ so $\sum M_n$ diverges, and yet we claim that $\sum f_n$ converges uniformly on [0,1]. Indeed if we write $S(x) = \sum_{n=1}^{\infty} f_n(x)$ and $S_l(x) = \sum_{n=1}^{\infty} f_n(x)$ then for all $x \in [0,1]$ we have

$$|S_l(x) - S(x)| = \sum_{n=l+1}^{\infty} f_n(x) \le \max\{M_{l+1}, M_{l+2}, \dots\} = \frac{1}{l+1}$$

since for each x, at most one of the terms $f_n(x)$ is non-zero.