AMATH/PMATH 331 Real Analysis, Problems for Chapter 3

- 1: For each of the following sequences of functions (f_n) , find the set A of points $x \in \mathbf{R}$ for which $(f_n(x))$ converges, and find the (pointwise) limit function $f(x) = \lim_{n \to \infty} f_n(x)$ for $x \in A$.
 - (a) $f_n(x) = (\sin x)^n$
 - (b) $f_n(x) = (\sin x)^{1/(2n+1)}$
- **2:** (a) Find $\int_0^1 \lim_{n \to \infty} nx(1-x^2)^n dx$ and $\lim_{n \to \infty} \int_0^1 nx(1-x^2)^n dx$.
 - (b) Find $\int_1^4 \lim_{n \to \infty} \frac{\tan^{-1}(nx)}{x} dx$ and $\lim_{n \to \infty} \int_1^4 \frac{\tan^{-1}(nx)}{x} dx$.
 - (c) Show that $\sum_{n=0}^{\infty} \frac{\cos(2^n x)}{1+n^2}$ converges uniformly on **R** and find $\int_0^{\pi/4} \sum_{n=0}^{\infty} \frac{\cos(2^n x)}{1+n^2} dx$.
- **3:** Suppose that (f_n) and (g_n) converge uniformly on $A \subseteq \mathbf{R}$.
 - (a) Show that if f and g are bounded on A then (f_ng_n) converges uniformly on A.
 - (b) Show that if f and g are not bounded then (f_ng_n) does not necessarily converge uniformly on A.
- **4:** Determine which of the following statements are true for all sequences of functions (f_n) .
 - (a) If (f_n) converges uniformly on (a,b) and pointwise on [a,b] then (f_n) converges uniformly on [a,b].
 - (b) If each f_n is continuous on [a,b] and $\sum f_n$ converges uniformly on [a,b] then $\sum M_n$ converges, where $M_n = \max\{|f_n(x)| | a \le x \le b\}$.