AMATH/PMATH 331 Real Analysis, Solutions to the Problems for Chapter 2

1: (a) Let $0 \le a < b$. Let $f(x) = x^2$. From the definition of integrability, show that f is integrable on [a, b] with $\int_a^b f = \frac{1}{3}(b^3 - a^3)$.

Solution: Let $\epsilon > 0$ be arbitrary. Choose $\delta = \frac{\epsilon}{2b(b-a)}$. Let X be any partition of [a,b] with $|X| < \delta$. Let $t_i \in [x_{i-1},x_i]$ be any sample points. Let $s_i = \sqrt{\frac{1}{3}(x_{i-1}^2 + x_{i-1}x_i + x_i^2)} \in [x_{i-1},x_i]$. Note that $\sum_{i=1}^n f(s_i)\Delta_i x = \sum_{i=1}^n \frac{1}{3}(x_{i-1}^2 + x_{i-1}x_i + x_i^2)(x_i - x_{i-1}) = \sum_{i=1}^n \frac{1}{3}(x_i^3 - x_{i-1}^3) = \frac{1}{3}(b^3 - a^3), \text{ so}$

$$\left| \sum_{i=1}^{n} f(t_i) \Delta_i x - \frac{1}{3} (b^3 - a^3) \right| = \left| \sum_{i=1}^{n} f(t_i) \Delta_i x - \sum_{i=1}^{n} f(s_i) \Delta_i x \right| \le \sum_{i=1}^{n} \left| f(t_i) - f(s_i) \right| \Delta_i x$$

$$= \sum_{i=1}^{n} \left| t_i^2 - s_i^2 \right| \Delta_i x = \sum_{i=1}^{n} \left| t_i + s_i \right| \left| t_i - s_i \right| \Delta_i x$$

$$< \sum_{i=1}^{n} 2b \, \delta \, \Delta_i x = \epsilon \, .$$

(b) Find $\int_0^8 \sqrt[3]{x} dx$ by evaluating the limit of a sequence of Riemann sums using the right endpoints of suitable partitions.

Solution: Let $f(x) = \sqrt[3]{x}$ and let $X_n = \{x_{n,0}, x_{n,1}, \dots, x_{n,n}\}$ where $x_{n,i} = \left(\frac{2i}{n}\right)^3$. We have

$$\Delta_{n,i}x = x_{n,i} - x_{n,i-1} = \left(\frac{2i}{n}\right)^3 - \left(\frac{2(i-1)}{n}\right)^3 = \frac{8}{n^3}\left(i^3 - (i-1)^3\right) = \frac{8}{n^3}(3i^2 - 3i + 1).$$

Note that $3i^2-3i+1$ is increasing for $i \ge 1$ (since $g(x)=3x^2-3x+1$ is increasing for $x \ge -\frac{1}{2}$) and so we have $|X_n|=\Delta_{n,n}x=\frac{8}{n^3}(3n^2-3n+1)\to 0$ as $n\to\infty$. Thus

$$\int_{0}^{\infty} \sqrt[3]{x} \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{n,i}) \Delta_{n,i} x$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{2i}{n}\right) \left(\frac{8}{n^3}\right) (3i^2 - 3i + 1)$$

$$= \lim_{n \to \infty} \left(\frac{48}{n^4} \sum_{i=1}^{n} i^3 + \frac{48}{n^4} \sum_{i=1}^{n} i^2 + \frac{16}{n^4} \sum_{i=1}^{n} i\right)$$

$$= \lim_{n \to \infty} \left(\frac{48}{n^4} \frac{n^2 (n+1)^2}{4} - \frac{48}{n^4} \frac{n(n+1)(2n+1)}{6} + \frac{16}{n^4} \frac{n(n+1)}{2}\right)$$

$$= \frac{48}{4} - 0 + 0$$

$$= 12.$$

2: (a) Let f be increasing on [a, b]. Show that f is integrable on [a, b].

Solution: Suppose that f is increasing (and hence bounded, below by f(a) and above by f(b)) on [a,b]. Notice that since f is increasing we have $M_i = f(x_i)$ and $m_i = f(x_{i-1})$, where $M_i = \sup \{f(t) | t \in [x_{i-1}, x_i] \}$ and $m_i = \inf \{f(t) | t \in [x_{i-1}, x_i] \}$, and so $\sum_{i=1}^n (M_i - m_i) = \sum_{i=1}^n (f(x_i) - f(x_{i-1})) = f(x_n) - f(x_0) = f(b) - f(a)$. Now let $\epsilon > 0$. Choose a partition $X = \{x_0, x_1, \dots, x_n\}$ of [a, b] with $|X| < \frac{\epsilon}{f(b) - f(a)}$. Then

$$U(f,X) - L(f,X) = \sum_{i=1}^{n} M_i \Delta_i x - \sum_{i=1}^{n} m_i \Delta_i x$$

$$= \sum_{i=1}^{n} (M_i - m_i) \Delta_i x$$

$$\leq \sum_{i=1}^{n} (M_i - m_i) |X|$$

$$= (f(b) - f(a)) |X|$$

$$< (f(b) - f(a)) \frac{\epsilon}{f(b) - f(a)}$$

$$= \epsilon.$$

Thus f is integrable on [a, b].

(b) Define $f:[0,1] \to \mathbf{R}$ as follows. Let f(0) = f(1) = 0. For $x \in (0,1)$ with $x \notin \mathbf{Q}$, let f(x) = 0. For $x \in (0,1)$ with $x \in \mathbf{Q}$, write $x = \frac{a}{b}$ where $0 < a,b \in \mathbf{Z}$ with $\gcd(a,b) = 1$, and then let $f(x) = \frac{1}{b}$. Show that f is integrable in [0,1].

Solution: Let $\epsilon > 0$ be arbitrary. Choose an integer N > 0 so that $\frac{1}{N} < \frac{\epsilon}{2}$. Note that there are only finitely many points $x \in [0,1]$ such that $f(x) > \frac{1}{N}$ (indeed the only such points are the points $x = \frac{a}{b}$ with $0 < a < b \in \mathbf{Z}$ with b < N). Say these points are p_1, p_2, \dots, p_{k-1} where

$$0 = p_0 < p_1 < p_2 < \dots < p_{k-1} < p_k = 1.$$

Choose $\delta > 0$ so that $\delta < \frac{\epsilon}{2k}$ and so that $\delta < \frac{p_i - p_{i-1}}{2}$ for all $1 = 1, 2, \dots, k$. Let X be the partition

$$X = \{0, p_1 - \delta, p_1 + \delta, p_2 - \delta, p_2 + \delta, \dots, p_{k-1} - \delta, p_{k-1} + \delta, 1\}$$

Note that L(f,X)=0 and since $f(x)\leq \frac{1}{N}$ for all $x\neq p_i$, and $f(p_i)\leq \frac{1}{2}$ for all $i=1,2,\cdots,k-1$, we have

$$U(f,X) \leq \frac{1}{N}(p_1 - \delta) + f(p_1) \cdot 2\delta + \frac{1}{N}(p_2 - p_1 - 2\delta) + f(p_2) \cdot 2\delta + \dots + f(p_{k-1}) \cdot 2\delta + \frac{1}{N}(1 - p_{k-1} - \delta)$$

$$= \frac{1}{N}(1 - 2(k-1)\delta) + (f(p_1) + f(p_2) + \dots + f(p_{k-1})) \cdot 2\delta$$

$$< \frac{1}{N} + \frac{k-1}{2} \cdot 2\delta < \frac{1}{N} + k\delta < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

3: (a) Show that if f is integrable on [a, b] then f^2 is integrable on [a, b].

Solution: Suppose that f is integrable on [a,b]. Then we know that |f| is also integrable on [a,b] (by the Estimation Theorem). Let M be an upper bound for |f|. Let $\epsilon > 0$ be arbitrary. Choose a partition X of [a,b] so that $U(|f|,X) - L(|f|,X) < \frac{\epsilon}{2M}$. Note that $M_i(f^2) = M_i(|f|)^2$ and $M_i(f^2) = m_i(|f|)^2$ so we have

$$M_i(f^2) - m_i(f^2) = M_i(|f|)^2 - m_i(|f|)^2$$

= $(M_i(|f|) - m_i(|f|))(M_i(|f|) + m_i(|f|)) \cdot (M_i(|f|) - m_i(|f|)) \cdot 2M$

Thus

$$U(f^{2}, X) - L(f^{2}, X) = \sum_{i=1}^{n} (M_{i}(f^{2}) - m_{i}(f^{2})) \Delta_{i} x$$

$$\leq \sum_{i=1}^{n} (M_{i}(|f|) - m_{i}(|f|)) \cdot 2M \cdot \Delta_{i} x$$

$$= 2M(U(|f|, X) - L(|f|, X)) < \epsilon.$$

(b) Show that if f is integrable and non-negative on [a, b], then \sqrt{f} is integrable on [a, b].

Solution: Suppose that f is integrable and non-negative on [a,b]. When $X=\{x_0,x_1,\cdots,x_n\}$ is a partition of [a,b], let us write $M_i(\sqrt{f})=\sup\left\{\sqrt{f(t)}\big|t\in[x_{i-1},x_i]\right\}$ and $M_i(f)=\sup\left\{f(t)\big|t\in[x_{i-1},x_i]\right\}$, and similarly for $m_i(\sqrt{f})$ and $m_i(f)$. Note that $M_i(f)=M_i(\sqrt{f})^2$ and $m_i(f)=m_i(\sqrt{f})^2$, and so we have

$$M_i(f) - m_i(f) = \left(M_i(\sqrt{f}) - m_i(\sqrt{f})\right) \left(M_i(\sqrt{f}) + m_i(\sqrt{f})\right).$$

For any constant c > 0, when $M_i(\sqrt{f}) < c$ we have $M_i(\sqrt{f}) - m_i(\sqrt{f}) < c$, and when $M_i(\sqrt{f}) > c$ we have $M_i(\sqrt{f}) + m_i(\sqrt{f}) > c$ so that $M_i(f) - m_i(f) \ge \left(M_i(\sqrt{f}) - m_i(\sqrt{f})\right)c$, that is $M_i(\sqrt{f}) - m_i(\sqrt{f}) \le \frac{1}{c}\left(M_i(f) - m_i(f)\right)$. Thus for any partition X and any constant c > 0 we have

$$\sum_{i \text{ such that } M_i(\sqrt{f}) < c} \left(M_i(\sqrt{f}) - m_i(\sqrt{f}) \right) \Delta_i x \leq \sum_{i=1}^n c \Delta_i x = c \left(b - a \right), \text{ and }$$

$$\sum_{i \text{ such that } M_i(\sqrt{f}) \geq c} \left(M_i(\sqrt{f}) - m_i(\sqrt{f}) \right) \Delta_i x \leq \sum_{i=1}^n \frac{1}{c} \left(M_i(f) - m_i(f) \right) \Delta_i x = \frac{1}{c} \left(U(f, X) - L(f, X) \right).$$

Now, let $\epsilon > 0$. Set $c = \frac{\epsilon}{2(b-a)}$ and choose a partition X of [a,b] such that $U(f,X) - L(f,X) < \frac{\epsilon^2}{4(b-a)}$. Then

$$U(\sqrt{f}, X) - L(\sqrt{f}, X) = \sum_{i=1}^{n} \left(M_i(\sqrt{f}) - m_i(\sqrt{f}) \right) \Delta_i x$$

$$= \sum_{i \text{ with } M_i(\sqrt{f}) < c} \left(M_i(\sqrt{f}) - m_i(\sqrt{f}) \right) \Delta_i x + \sum_{i \text{ with } M_i(\sqrt{f}) < c} \left(M_i(\sqrt{f}) - m_i(\sqrt{f}) \right) \Delta_i x$$

$$\leq c (b - a) + \frac{1}{c} \left(U(f, X) - L(f, X) \right)$$

$$< \frac{\epsilon}{2(b - a)} (b - a) + \frac{2(b - a)}{\epsilon} \frac{\epsilon^2}{4(b - a)} = \epsilon.$$

Thus \sqrt{f} is integrable on [a, b].