AMATH/PMATH 331 Real Analysis, Problems for Chapter 2

- 1: (a) Let $0 \le a < b$. Let $f(x) = x^2$. From the definition of integrability, show that f is integrable on [a, b] with $\int_a^b f = \frac{1}{3}(b^3 a^3)$.
 - (b) Find $\int_0^8 \sqrt[3]{x} \, dx$ by evaluating the limit of a sequence of Riemann sums using the right endpoints of suitable partitions.
- **2:** (a) Let f be increasing on [a, b]. Show that f is integrable on [a, b].
 - (b) Define $f:[0,1]\to \mathbf{R}$ as follows. Let f(0)=f(1)=0. For $x\in(0,1)$ with $x\notin\mathbf{Q}$, let f(x)=0. For $x\in(0,1)$ with $x\in\mathbf{Q}$, write $x=\frac{a}{b}$ where $0< a,b\in\mathbf{Z}$ with $\gcd(a,b)=1$, and then let $f(x)=\frac{1}{b}$. Show that f is integrable in [0,1].
- **3:** (a) Show that if f is integrable on [a, b] then f^2 is integrable on [a, b].
 - (b) Show that if f is integrable and non-negative on [a, b], then \sqrt{f} is integrable on [a, b].