1: Let $\mathbf{F} = \mathbf{Q}$ or \mathbf{R} . For $a, b \in \mathbf{F}$ with $a \leq b$ we write

$$(a,b) = \{x \in \mathbf{F} | a < x < b\} , [a,b] = \{x \in \mathbf{F} | a \le x \le b\} , (a,b] = \{x \in \mathbf{F} | a < x \le b\} , [a,b) = \{x \in \mathbf{F} | a \le x < b\} .$$

A **bounded interval** in **F** is any set of one of the above forms. For a subset $A \subseteq \mathbf{F}$, we say that A has the **intermediate value property** when for every $a, b, x \in \mathbf{F}$ with a < x < b, if $a \in A$ and $b \in A$ then $x \in A$.

- (a) Find a bounded set $A \subseteq \mathbf{Q}$ which has the intermediate value property but which is not a bounded interval in \mathbf{Q} .
- (b) Show that for every bounded set $A \subseteq \mathbf{R}$, if A has the intermediate value property then A is a bounded interval in \mathbf{R} .
- **2:** (a) Let $x_k = \frac{2k+1}{k-1}$ for $k \ge 2$. Use the definition of the limit to show that $\lim_{k \to \infty} x_k = 2$.
 - (b) Let $x_k = \frac{k}{\sqrt{k+3}}$ for $k \ge 0$. Use the definition of the limit to show that $\lim_{n \to \infty} x_k = \infty$.
 - (c) Let $x_k = \sin(k)$ for $k \ge 0$. Use the definition of the limit to show that $(x_k)_{k \ge 0}$ diverges.
 - (d) Let $x_1 = \frac{7}{2}$ and for $k \ge 1$ let $x_{k+1} = \frac{6}{5 x_k}$. Find $\lim_{k \to \infty} x_k$ if it exists.
- **3:** (a) Find a divergent sequence $(x_k)_{k\geq 0}$ in **R** with $|x_k-x_{k-1}|\leq \frac{1}{k}$ for all $k\geq 1$.
 - (b) Let $(x_k)_{k\geq 0}$ be a sequence in **R** with $|x_k-x_{k-1}|\leq \frac{1}{k^2}$ for all $k\geq 1$. Show that (x_k) converges in **R**.
- **4:** (a) Show that every sequence (x_k) in **R** has a monotonic subsequence. Hint: consider indices k with the property that $x_k > x_j$ for all j > k.
 - (b) Let $x_k = \frac{k}{\sqrt{2}} \lfloor \frac{k}{\sqrt{2}} \rfloor$ for $k \geq 0$. Show that (x_k) has a monotonic subsequence (x_{k_j}) with $x_{k_j} \to 0$ as $i \to \infty$.
- **5:** (a) Show that there exist (at least) 3 distinct values of x such that $8x^3 = 6x + 1$.
 - (b) Let $f:[0,2]\to \mathbf{R}$ be continuous with f(0)=f(2). Show that f(x)=f(x+1) for some $x\in[0,1]$.
 - (c) Let $f: \mathbf{R} \to \mathbf{R}$ be continuous. Suppose that $|f(x) f(y)| \ge |x y|$ for all $x, y \in \mathbf{R}$. Show that f is surjective.
- **6:** (a) Define $f, g: \mathbf{R} \to \mathbf{R}$ by $f(x) = x^3$ and $g(x) = \sqrt[3]{x}$. Show that g is uniformly continuous but that f is not.
 - (b) Find an example of a function $f: \mathbf{R} \to \mathbf{R}$ which is continuous and bounded but not uniformly continuous.
 - (c) Let $a, b \in \mathbf{R}$ with a < b, and let $f, g : [a, b] \to \mathbf{R}$. Suppose that f and g are both uniformly continuous and bounded. Show that fg is uniformly continuous.
- 7: (a) Let $f: \mathbf{R} \to \mathbf{R}$ be differentiable with f(0) = 3. Suppose $f'(x) \le 1$ for all x > 0. Prove that there is a number a > 0 such that f(a) = 2a.
 - (b) Let $f: \mathbf{R} \to \mathbf{R}$ be twice differentiable with f(0) = 0 and f(1) = 1 and f'(0) = f'(1) = 0. Show that $|f''(x)| \ge 4$ for some $x \in [0, 1]$.
 - (c) Prove that $\sqrt{x}^{\sqrt{x+1}} > \sqrt{x+1}^{\sqrt{x}}$ for all $x > e^2$.
- 8: (a) Let $f: \mathbf{R} \to \mathbf{R}$ be differentiable with $\lim_{x \to \infty} f'(x) = b$. Show that $\lim_{x \to \infty} (f(x+1) f(x)) = b$.
 - (b) Let $f: \mathbf{R} \to \mathbf{R}$ be differentiable in \mathbf{R} with f'(0) > 0 and f' continuous at 0. Show that there exists $\delta > 0$ such that f is increasing in the interval $[-\delta, \delta]$.
 - (c) Let $f: \mathbf{R} \to \mathbf{R}$ be continuous at 0 and differentiable in $\mathbf{R} \setminus \{0\}$ with $\lim_{x \to 0} f'(x) = b$. Show that f is differentiable at 0 with f'(0) = b.