Chapter 5. Limits and Continuity in Metric Spaces

Limits of Sequences in Metric Spaces

5.1 Definition: Let $(x_n)_{n\geq p}$ be a sequence in a metric space X. We say that the sequence $(x_n)_{n\geq p}$ is **bounded** when the set $\{x_n\}_{n\geq p}$ is bounded, that is when there exists $a\in X$ and r>0 such that $x_n\in B(a,r)$ for all indices $n\geq p$.

For $a \in X$, we say that the sequence $(x_n)_{n \geq p}$ converges to a (or that the **limit** of x_n is equal to a) and we write $\lim_{n \to \infty} x_n = a$ (or we write $x_n \to a$) when

$$\forall \epsilon > 0 \ \exists m \in \mathbb{Z}_{\geq p} \ \forall n \in \mathbb{Z}_{\geq p} \left(n \geq m \Longrightarrow d(x_n, a) < \epsilon \right).$$

We say that the sequence $(x_n)_{n\geq p}$ converges (in X) when it converges to some point $a\in X$, and otherwise we say that $(x_n)_{n\geq p}$ diverges (in X).

- **5.2 Theorem:** (Basic Properties of Limits of Sequences) Let $(x_n)_{n\geq p}$ be a sequence in a metric space X, and let $a\in X$.
- (1) If $(x_n)_{n>p}$ converges then its limit is unique.
- (2) If $q \ge p$ and $y_n = x_n$ for all $n \ge q$, then $(x_n)_{n \ge p}$ converges if and only if $(y_n)_{n \ge q}$ converges and, in this case, $\lim_{n \to \infty} y_n = \lim_{n \to \infty} x_n$.
- (3) If $(x_{n_k})_{k\geq q}$ is a subsequence of $(x_n)_{n\geq p}$, and $\lim_{n\to\infty} x_n = a$, then $\lim_{k\to\infty} x_{n_k} = a$.
- (4) If $(x_n)_{n\geq p}$ converges then it is bounded.
- (5) We have $\lim_{n\to\infty} x_n = a$ in X if and only if $\lim_{n\to\infty} d(x_n, a) = 0$ in \mathbb{R} .

Proof: We prove Parts 1, 4 and 5 and leave the proofs of the other parts as an exercise. To prove Part 1, suppose that $x_n \to a$ in X and $x_n \to b$ in X. We need to show that a = b. Suppose, for a contradiction, that $a \neq b$, and note that d(a,b) > 0. Since $x_n \to a$ and $x_n \to b$, we can choose $m \in \mathbb{Z}_{\geq p}$ such that when $n \geq m$ we have $d(x_n,a) < \frac{d(a,b)}{2}$, and $d(x_n,b) < \frac{d(a,b)}{2}$. Then we have $d(a,b) \leq d(a,x_m) + d(x_m,b) < \frac{d(a,b)}{2} + \frac{d(a,b)}{2} = d(a,b)$, giving the desired contradiction.

To prove Part 4, suppose that $(x_n)_{n\geq p}$ converges, say $x_n\to a$ in X. Choose $m\in\mathbb{Z}_{\geq p}$ such that when $n\geq m$ we have $d(x_n,a)<1$. Then for all $n\in\mathbb{Z}_{\geq p}$ we have $d(x_n,a)\leq r$ where $r=\max\left\{d(x_p,a),d(x_{p+1},a),\cdots,d(x_{m-1},a),1\right\}$ so that $x_n\in B(a,r+1)$.

To prove Part 5, note that since $d(x_n, a) \ge 0$ we have $d(x_n, a) = |d(x_n, a) - 0|$ and so

$$\lim_{n \to \infty} x_n = a \text{ in } X \iff \forall \epsilon > 0 \ \exists m \in \mathbb{Z}_{\geq p} \ \forall n \in \mathbb{Z}_{\geq p} \ d(x_n, a) < \epsilon$$

$$\iff \forall \epsilon > 0 \ \exists m \in \mathbb{Z}_{\geq p} \ \forall n \in \mathbb{Z}_{\geq p} \ \left| d(x_n, a) - 0 \right| < \epsilon$$

$$\iff \lim_{n \to \infty} d(x_n, a) = 0 \text{ in } \mathbb{R}.$$

5.3 Note: Because of Part 2 of the above theorem, the initial index p of a sequence $(x_n)_{n\geq p}$ does not effect whether or not the sequence converges and it does not effect the limit. For this reason, we often omit the initial index p from our notation and write (x_n) for the sequence $(x_n)_{n\geq p}$. Also, we often choose a specific value of p, usually p=1, in the statements or the proofs of various theorems with the understanding that any other initial value would work just as well.

5.4 Theorem: (Components of Sequences in \mathbb{R}^m) Let $(x_n)_{n\geq 1}$ be a sequence in \mathbb{R}^m , say $x_n = (x_{n,1}, x_{n,2}, \dots, x_{n,m}) \in \mathbb{R}^m$, and let $a = (a_1, a_2, \dots, a_m) \in \mathbb{R}^m$. Then using any of the metrics d_1, d_2 or d_∞ in \mathbb{R}^m , we have $\lim_{n\to\infty} x_n = a$ in \mathbb{R}^m if and only if $\lim_{n\to\infty} x_{n,k} = a_k$ in \mathbb{R} for all indices k with $1 \leq k \leq m$.

Proof: Let p = 1, 2 or ∞ . Suppose that $\lim_{n \to \infty} x_n = a$ in \mathbb{R}^m . Let $1 \le k \le m$ and let $\epsilon > 0$. Choose $m \in \mathbb{Z}^+$ such that when $n \ge m$ we have $d_p(x_n, a) < \epsilon$, that is $||x_n - p||_p < \epsilon$. Then when $n \ge m$ we have

$$|x_{n,k} - a_k| = (|x_{n,k} - a_k|^p)^{1/p} \le \left(\sum_{j=1}^m |x_{n,j} - a_j|^p\right)^{1/p} = ||x_n - a||_p < \epsilon,$$

and so $x_{n,k} \to a_k$ in \mathbb{R} , as required.

Suppose, conversely, that for all k with $1 \leq k \leq m$ we have $\lim_{n \to \infty} x_{n,k} = a_k$ in \mathbb{R} . Let $\epsilon > 0$. Choose $m \in \mathbb{Z}^+$ such that for all $n \geq m$ we have $|x_{n,k} - a_k| < \frac{\epsilon}{m}$ for $1 \leq k \leq m$. Then, letting e_k denote the k^{th} standard basis vector in \mathbb{R}^m , when $n \geq m$ we have

$$||x_n - a||_p = \left\| \sum_{k=1}^m (x_{n,k} - a_k) e_k \right\|_p \le \sum_{k=1}^m \left\| (x_{n,k} - a_k) e_k \right\|_p$$
$$= \sum_{k=1}^m \left| x_{n,k} - a_k \right| ||e_k||_p = \sum_{k=1}^m \left| x_{n,k} - a_k \right| < \sum_{k=1}^m \frac{\epsilon}{m} = \epsilon$$

so that $x_n \to a$ in \mathbb{R}^m , as required.

- **5.5 Note:** When $(x_n)_{n\geq 1}$ is a sequence in \mathbb{R}^{∞} , ℓ_1 , ℓ_2 or ℓ_{∞} , each term x_n is itself a sequence (so that (x_n) is a sequence of sequences) and we can write $x_n = (x_{n,k})_{k\geq 1}$. We have sequences $x_1 = (x_{1,1}, x_{1,2}, \cdots)$, $x_2 = (x_{2,1}, x_{2,2}, x_{2,3}, \cdots)$, and $x_3 = (x_{3,1}, x_{3,2}, \cdots)$ and so on. This is not the same thing as a subsequence (x_n) , which is a single sequence $(x_{n_k})_{k\geq 1} = (x_{n_1}, x_{n_2}, x_{n_3}, \cdots)$.
- **5.6 Theorem:** (Components of Sequences in ℓ_p). Let p = 1, 2 or ∞ . Let $(x_n)_{n \geq 1}$ be a sequence in ℓ_p , say $x_n = (x_{n,k})_{k \geq 1} \in \ell_p$, and let $a = (a_k)_{k \geq 1} \in \ell_p$. If $\lim_{n \to \infty} x_n = a$ in ℓ_p then $\lim_{n \to \infty} x_{n,k} = a_k$ in \mathbb{R} for all $k \in \mathbb{Z}^+$.

Proof: The proof is the same as the first half of the proof of Theorem 5.4. Suppose that $\lim_{n\to\infty} x_n = a$ in ℓ_p . Let $k \in \mathbb{Z}^+$ and let $\epsilon > 0$. Choose $m \in \mathbb{Z}^+$ such that when $n \geq m$ we have $||x_n - a||_p < \epsilon$. Then when $n \geq m$ we have

$$|x_{n,k} - a_k| = (|x_{n,k} - a_k|^p)^{1/p} \le \left(\sum_{j=1}^{\infty} |x_{n,j} - a_j|^p\right)^{1/p} = ||x_n - a||_p < \epsilon$$

and so $x_{n,k} \to a_k$ in \mathbb{R} , as required.

- **5.7 Note:** Unlike the case in \mathbb{R}^m , in the infinite-dimensional spaces ℓ_p , when $x_{n,k} \to a_k$ in \mathbb{R} for all indices k, it does not necessarily follow that $x_n \to a$ in ℓ_p . For example, you can verify, as an exercise, that when $x_n = e_n$ (the n^{th} standard basis vector in \mathbb{R}^{∞}), we have $\lim_{n \to \infty} x_{n,k} = 0$ in \mathbb{R} for all $k \in \mathbb{Z}^+$, but $\lim_{n \to \infty} x_n \neq 0$ in ℓ_p .
- **5.8 Exercise:** For each $n \in \mathbb{Z}^+$, let $x_n \in \mathbb{R}^{\infty}$ be the sequence given by $x_n = \frac{1}{n} \sum_{k=1}^n e_k$, that is by $x_n = (x_{n,k})_{k \geq 1} = (\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}, 0, 0, 0, \dots)$ with n non-zero terms. Show that (x_n) converges in $(\mathbb{R}^{\infty}, d_2)$ but diverges in $(\mathbb{R}^{\infty}, d_1)$.

5.9 Remark: In the definition of the limit of a sequence in a metric space X (Definition 5.1), we can replace the strict inequality $d(x_n, a) < \epsilon$ by the inequality $d(x_n, a) \le \epsilon$ without changing the meaning. In other words, for a sequence $(x_n)_{n \ge p}$ in X and an element $a \in X$ we have

$$\lim_{n \to \infty} x_n = a \text{ in } X \iff \forall \epsilon > 0 \ \exists m \in \mathbb{Z}_{\geq p} \forall n \in \mathbb{Z}_{\geq p} \left(n \geq m \implies d(x_n, a) \leq \epsilon \right).$$

Here is a proof. Suppose that $\lim_{n\to\infty} x_n = a$ in X. Let $\epsilon > 0$. Choose $m \in \mathbb{Z}_{\geq p}$ so that when $n \geq m$ we have $d(x_n, a) < \epsilon$. Then when $n \geq m$ we also have $d(x_n, a) \leq \epsilon$. Suppose, conversely, that for every $\epsilon > 0$ there exists $m \in \mathbb{Z}_{\geq p}$ such that whenever $n \geq m$ we have $d(x_n, a) \leq \epsilon$. Let $\epsilon > 0$. Choose $m \in \mathbb{Z}^+$ such that when $n \geq m$ we have $d(x_n, a) \leq \frac{\epsilon}{2}$. Then when $n \geq m$ we have $d(x_n, a) \leq \frac{\epsilon}{2} < \epsilon$.

5.10 Remark: Note that for $h \in \mathcal{B}[a,b]$ and r > 0, we have

$$||h||_{\infty} \le r \iff \sup\{|h(x)| \mid a \le x \le b\} \le r \iff |h(x)| \le r \text{ for all } x \in [a, b].$$

We also remark that we would not have equivalence if we replaced $\leq r$ by < r, as we only have a one way implication: if |h(x)| < r for all $x \in [a, b]$ then $\sup \{|h(x)| \mid a \leq x \leq b\} \leq r$.

5.11 Theorem: (Limits in $\mathcal{B}[a,b]$ and Uniform Convergence) Let $(f_n)_{n\geq 1}$ be a sequence in $\mathcal{B}[a,b]$, and let $g\in\mathcal{B}[a,b]$. Then $f_n\to g$ in $(\mathcal{B}[a,b],d_\infty)$ if and only if $f_n\to g$ uniformly on [a,b].

Proof: This follows immediately from the above two remarks. Indeed we have

$$f_n \to g \text{ in } \mathcal{B}[a,b] \iff \forall \epsilon > 0 \ \exists m \in \mathbb{Z}^+ \ \forall n \in \mathbb{Z}^+ \left(n \ge m \implies \|f_n - g\|_{\infty} \le \epsilon\right)$$

 $\iff \forall \epsilon > 0 \ \exists m \in \mathbb{Z}^+ \ \forall n \in \mathbb{Z}^+ \left(n \ge m \implies |f_n(x) - g(x)| \le \epsilon \text{ for all } x \in [a,b]\right)$
 $\iff f_n \to g \text{ uniformly on } [a,b].$

- **5.12 Remark:** In Chapter 3, we discussed pointwise convergence and uniform convergence of sequences of functions. In this Chapter, we are discussing convergence in a metric space. For a metric space X whose elements are functions, such as $\mathcal{B}[a,b]$ or $\mathcal{C}[a,b]$, a sequence in X is a sequence of functions, so we now have several different notions of convergence for sequences of functions. The above theorem shows that convergence in the metric space $\mathcal{B}[a,b]$ (hence also in $\mathcal{C}[a,b]$) using the supremum metric d_{∞} , is the same thing as uniform convergence. One might ask whether convergence in $\mathcal{C}[a,b]$ using the metrics d_1 or d_2 implies, or is implied by, pointwise convergence. The answer is negative, as the following exercises illustrate.
- **5.13 Exercise:** Define $f_n:[0,1]\to\mathbb{R}$ by $f_n(x)=1-nx$ for $0\leq x\leq \frac{1}{n}$ and $f_n(x)=0$ for $\frac{1}{n}\leq x\leq 1$. Show that $f_n\to 0$ in $\mathcal{C}[0,1]$ using either of the metrics d_1 or d_2 , but $f_n\not\to 0$ pointwise on [0,1].
- **5.14 Exercise:** Define $f_n:[0,1]\to\mathbb{R}$ by $f_n(x)=n^2x-n^3x^2$ for $0\leq x\leq \frac{1}{n}$ and $f_n(x)=0$ for $\frac{1}{n}\leq x\leq 1$. Show that $f_n\to 0$ pointwise on [0,1] but $f_n\not\to 0$ in $\mathcal{C}[0,1]$ using either of the metrics d_1 or d_2 .
- **5.15 Exercise:** Define $f_n: [0,1] \to \mathbb{R}$ by $f_n(x) = \sqrt{n} x^n$. Show that $(f_n)_{n\geq 1}$ converges in $(\mathcal{C}[0,1], d_1)$ but diverges in $(\mathcal{C}[0,1], d_2)$.

Limits and Closed Sets

- **5.16 Theorem:** (The Sequential Characterization of Limit Points and Closed Sets) Let X be a metric space, let $a \in X$, and let $A \subseteq X$.
- (1) $a \in A'$ if and only if there exists a sequence (x_n) in $A \setminus \{a\}$ with $\lim_{n \to \infty} x_n = a$ in X.
- (2) $a \in \overline{A}$ if and only if there exists a sequence (x_n) in A with $\lim_{n \to \infty} x_n = a$ in X.
- (3) A is closed in X if and only if for every sequence (x_n) in A which converges in X, we have $\lim_{n\to\infty} x_n \in A$.

Proof: We prove Parts 1 and 3 and leave the proof of Part 2 as an exercise. Suppose that $a \in A'$ (which means that for every r > 0 we have $B^*(a,r) \cap A \neq \emptyset$). For each $n \in \mathbb{Z}^+$, choose $x_n \in B^*(a, \frac{1}{n}) \cap A$, that is choose $x_n \in A \setminus \{a\}$ with $d(x_n, a) < \frac{1}{n}$. Then $(x_n)_{n \geq 1}$ is a sequence in $A \setminus \{a\}$ with $\lim_{n \to \infty} x_n = a$.

Suppose, conversely, that $(x_n)_{n\geq 1}$ is a sequence in $A\setminus\{a\}$ with $\lim_{n\to\infty}x_n=a$. Let r>0. Choose $m\in\mathbb{Z}^+$ such that $d(x_n,a)< r$ for all $n\geq m$. Since $x_m\in A\setminus\{a\}$ with $d(x_m,a)< r$, we have $x_m\in B^*(a,r)\cap A$ and so $B^*(a,r)\cap A\neq\emptyset$. This proves Part 1.

To prove Part 3, suppose that A is closed in X. Let $(x_n)_{n\geq 1}$ be a sequence in A which converges in X, and let $a=\lim_{n\to\infty}x_n\in X$. Suppose, for a contradiction, that $a\notin A$. Since $a\notin A$ we have $A=A\setminus\{a\}$ so in fact (x_n) is a sequence in $A\setminus\{a\}$. Since (x_n) is a sequence in $A\setminus\{a\}$ with $\lim_{n\to\infty}x_n=a$, it follows from Part 1 that $a\in A'$. Since A is closed we have $A'\subseteq A$ and so $a\in A$ giving the desired contradiction.

Suppose, conversely, that for every sequence in A which converges in X, the limit of the sequence lies in A. Let $a \in A'$. By Part 1, we can choose a sequence (x_n) in $A \setminus \{a\}$ with $\lim_{n \to \infty} x_n = a$. Then (x_n) is a sequence in A which converges in X, so its limit lies in A, that is $a \in A$. Since $a \in A'$ was arbitrary, this shows that $A' \subseteq A$, and so A is closed. This proves Part 3.

5.17 Example: Let U be a normed linear space, let $a \in U$ and let r > 0. Show that $\overline{B(a,r)} = \overline{B}(a,r)$ (so the closed ball is equal to the closure of the open ball).

Solution: We saw, in Example 4.32, that $\overline{B}(a,r)$ is closed. Since $\overline{B}(a,r)$ is closed and $B(a,r) \subseteq \overline{B}(a,r)$, it follows that $\overline{B}(a,r) \subseteq \overline{B}(a,r)$. Let $b \in \overline{B}(a,r)$, that is let $b \in U$ with $||b-a|| \le r$. If ||b-a|| < r then we have $b \in B(a,r) \subseteq \overline{B}(a,r)$. Suppose that ||b-a|| = r. For $n \in \mathbb{Z}^+$, let $x_n = a + \left(1 - \frac{1}{n}\right)(b-a) \in U$. Note that

$$||x_n - a|| = ||(1 - \frac{1}{n})(b - a)|| = (1 - \frac{1}{n})||b - a|| = (1 - \frac{1}{n})r < r$$

so that $x_n \in B(a,r)$. Note that

$$||x_n - b|| = \left\| \frac{1}{n}(a - b) \right\| = \frac{1}{n}||a - b|| = \frac{r}{n} \to 0 \text{ in } \mathbb{R}$$

so that we have $x_n \to b$ in U (by Part 6 of Theorem 5.2). Since (x_n) is a sequence in B(a,r) with $x_n \to b$ in U, it follows that $b \in \overline{B(a,r)}$ by Part 2 of the above theorem.

5.18 Example: In the previous example, it might have seemed intuitively obvious that $\overline{B(a,r)} = \overline{B}(a,r)$, but in fact this is not true in all metric spaces. For example in \mathbb{Z} (using the same standard metric used in \mathbb{R}) we have $B(0,1) = \{0\}$ and $\overline{B(0,1)} = \{0\}$, but $\overline{B}(0,1) = \{-1,0,1\}$.

5.19 Exercise: Recall that $\mathbb{R}^{\infty} \subseteq \ell_1 \subseteq \ell_2 \subseteq \ell_{\infty}$. Determine whether \mathbb{R}^{∞} is closed in ℓ_1 using the metric d_1 (this problem is solved in Example 5.20, below). Determine which of the spaces \mathbb{R}^{∞} and ℓ_1 is closed in ℓ_2 using the metric d_2 . Determine which of the spaces \mathbb{R}^{∞} , ℓ_1 and ℓ_2 is closed in ℓ_{∞} using the metric d_{∞} .

5.20 Example: Show that \mathbb{R}^{∞} is dense in the metric space (ℓ_1, d_1) .

Solution: Since the closure of \mathbb{R}^{∞} in ℓ_1 is contained in ℓ_1 (by the definition of closure), it suffices to show that $\ell_1 \subseteq \overline{\mathbb{R}^{\infty}}$. Let $a = (a_n)_{n \geq 1} \in \ell_1$, so we have $\sum_{n=1}^{\infty} |a_n| < \infty$. For each $n \in \mathbb{Z}^+$ let $x_n = (x_{n,k})_{k \geq 1}$ be the sequence given by $x_n = \sum_{k=1}^n a_k e_k$ (where e_k is the k^{th} standard basis vector in \mathbb{R}^{∞}), that is

$$(x_{n,k})_{k>1} = (x_{n,1}, x_{n,2}, x_{n,3}, \cdots) = (a_1, a_2, \cdots, a_n, 0, 0, 0, \cdots).$$

Then each $x_n \in \mathbb{R}^{\infty}$ and, in the metric space ℓ_1 , we have $x_n \to a$ because given $\epsilon > 0$ we can choose an index m so that $\sum_{k>m} |a_k| < \epsilon$ and then for all $n \ge m$ we have

$$||x_n - a||_1 = \sum_{k=1}^{\infty} |x_{n,k} - a_k| = \sum_{k>n} |a_k| \le \sum_{k>m} |a_k| < \epsilon.$$

It follows, from Part 2 of Theorem 5.16, that $a \in \overline{\mathbb{R}^{\infty}}$, as required.

5.21 Exercise: Let

$$\mathcal{R}[a,b] = \{ f \in \mathcal{B}[a,b] \mid f \text{ is Riemann integrable} \},$$

$$\mathcal{P}[a,b] = \{ f \in \mathcal{B}[a,b] \mid f \text{ is a polynomial} \},$$

$$\mathcal{C}^{1}[a,b] = \{ f \in \mathcal{B}[a,b] \mid f \text{ is continuously differentiable} \}.$$

Note that

$$\mathcal{P}[a,b] \subseteq \mathcal{C}^1[a,b] \subseteq \mathcal{C}[a,b] \subseteq \mathcal{R}[a,b] \subseteq \mathcal{B}[a,b].$$

Determine which of the above spaces are closed in the metric space $\mathcal{B}[a,b]$, using the supremum metric d_{∞} (we deal with the space $\mathcal{C}[a,b]$ in the following example).

5.22 Example: Show that C[a, b] is closed in the metric space $(\mathcal{B}[a, b], d_{\infty})$.

Solution: Let (f_n) be a sequence in $\mathcal{C}[a,b]$ which converges in $\mathcal{B}[a,b]$ (using the metric d_{∞}). Let $g = \lim_{n \to \infty} f_n$ in $\mathcal{B}[a,b]$. By Theorem 5.11, we know that $f_n \to g$ uniformly on [a,b]. Since each function f_n is continuous, it follows from Theorem 3.9 (Uniform Convergence and Continuity) that g is continuous, that is $g \in \mathcal{C}[a,b]$. By the Sequential Characterization of Closed Sets (Part 3 of Theorem 5.16), it follows that $\mathcal{C}[a,b]$ is closed in $\mathcal{B}[a,b]$.

Limits of Functions and Continuity in Metric Spaces

5.23 Definition: Let (X, d_X) and (Y, d_Y) be metric spaces. Let $A \subseteq X$, let $f : A \to Y$, let $a \in A'$, and let $b \in Y$. We say that the **limit** of f(x) as x tends to a is equal to b, and we write $\lim_{x \to a} f(x) = b$, when

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in A \ (0 < d_X(x, a) < \delta \Longrightarrow d_Y(f(x), b) < \epsilon).$$

5.24 Theorem: (The Sequential Characterization of Limits) Let X and Y be metric spaces, let $A \subseteq X$, let $f: A \to Y$, let $a \in A' \subseteq X$, and let $b \in Y$. Then $\lim_{x \to a} f(x) = b$ if and only if for every sequence (x_n) in $A \setminus \{a\}$ with $x_n \to a$ we have $\lim_{n \to \infty} f(x_n) = b$.

Proof: Suppose that $\lim_{x\to A} f(x) = b$. Let (x_n) be a sequence in $A\setminus\{a\}$ with $x_n\to a$. Let $\epsilon>0$. Since $\lim_{x\to a} f(x) = b$ we can choose $\delta>0$ such that $0< d(x,a)<\delta\Longrightarrow d\big(f(x),b\big)<\epsilon$. Since $x_n\to a$ we can choose $m\in\mathbb{Z}^+$ such that $n\geq m\Longrightarrow d(x_n,a)<\delta$. For $n\geq m$ we have $d(x_n,a)<\delta$ and we have $x_n\neq a$ (since (x_n) is a sequence in $A\setminus\{a\}$), so that $0< d(x_n,a)<\delta$, and hence $d\big(f(x_n),b\big)<\epsilon$. Thus $\lim_{n\to\infty} f(x_n)=b$, as required.

Suppose, conversely, that $\lim_{x\to a} f(x) \neq b$. Choose $\epsilon > 0$ such that for every $\delta > 0$ there exists $x \in A$ such that $0 < d(x,a) < \delta$ and $d(f(x),b) \geq \epsilon$. For each $n \in \mathbb{Z}^+$, choose $x_n \in A$ such that $0 < d(x_n,a) < \frac{1}{n}$ and $d(f(x_n),b) \geq \epsilon$. For each n, since $0 < d(x_n,a)$ we have $x_n \neq a$ so the sequence (x_n) lies in $A \setminus \{a\}$. Since $d(x_n,a) < \frac{1}{n}$ for all $n \in \mathbb{Z}^+$, it follows that $\lim_{n\to\infty} f(x) \neq b$. Thus we have found a sequence (x_n) in $A \setminus \{a\}$ with $x_n \to a$ such that $\lim_{n\to\infty} f(x_n) \neq b$.

- **5.25 Definition:** Let (X, d_X) and (Y, d_Y) be metric spaces, and let $f: X \to Y$. For $a \in X$, we say that f is **continuous** at a when for every $\epsilon > 0$ there exists $\delta > 0$ such that for all $x \in X$, if $d_X(x, a) < \delta$ then $d_Y(f(x), f(a)) < \epsilon$. We say that f is **continuous** (on X) when f is continuous at every point $a \in X$. We say that f is **uniformly continuous** (on X) when for every $\epsilon > 0$ there exists $\delta > 0$ such that for all $x, y \in X$, if $d_X(x, y) < \delta$ then $d_Y(f(x), f(y)) < \epsilon$. We say that f is **Lipschitz continuous** (on X) when there is a constant $\ell \geq 0$, called a **Lipschitz constant** for f, such that for all $x, y \in X$ we. have $d(f(x), f(y)) \leq \ell \cdot d(x, y)$. Note that if f is Lipschitz continuous then f is also uniformly continuous (indeed we can take $\delta = \frac{\epsilon}{\ell}$ in the definition of uniform continuity). A bijective map $f: X \to Y$ such that both f and f^{-1} are continuous is called a **homeomorphism**.
- **5.26 Note:** Let X and Y be metric spaces and let $a \in X$. If a is a limit point of X then f is continuous at a if and only if $\lim_{x\to a} f(x) = f(a)$. If a is an isolated point of X then f is necessarily continuous at a, vacuously.
- **5.27 Theorem:** (The Sequential Characterization of Continuity) Let X and Y be metric spaces using metrics d_X and d_Y , let $f: X \to Y$, and let $a \in X$. Then f is continuous at a if and only if for every sequence (x_n) in X with $x_n \to a$ we have $\lim_{n \to \infty} f(x_n) = f(a)$.

Proof: The proof is left as an exercise.

5.28 Exercise: Let X, Y and Z be metric spaces, let $f: X \to Y$, let $g: Y \to Z$. Show that if f is continuous at the point $a \in X$ and g is continuous at the point $f(a) \in Y$ then the composite function $g \circ f$ is continuous at a.

- **5.29 Theorem:** (The Topological Characterization of Continuity) Let X and Y be metric spaces and let $f: X \to Y$. Then
- (1) f is continuous (on X) if and only if $f^{-1}(V)$ is open in X for every open set V in Y,
- (2) f is continuous (on X) if and only if $f^{-1}(C)$ is closed in X for every closed set C in Y.

Proof: To prove Part 1, suppose that f is continuous in X. Let V be open in Y. Let $a \in f^{-1}(V)$ and let $f(a) \in V$. Since V is open, we can choose $\epsilon > 0$ such that $B(f(a), \epsilon) \subseteq V$. Since f is continuous at a we can choose $\delta > 0$ such that for all $x \in X$ with $d(x, a) < \delta$ we have $d(f(x), f(a)) < \epsilon$. Then we have $f(B(a, \delta)) \subseteq B(f(a), \epsilon) \subseteq V$ and so $B(a, \delta) \subseteq f^{-1}(V)$. Thus $f^{-1}(V)$ is open in X, as required.

Suppose, conversely, that $f^{-1}(V)$ is open in X for every open set V in Y. Let $a \in X$ and let $\epsilon > 0$. Taking $V = B(f(a), \epsilon)$, which is open in Y, we see that $f^{-1}(B(f(a), \epsilon))$ is open in X. Since $a \in f^{-1}(B(f(a), \epsilon))$ and $f^{-1}(B(f(a), \epsilon))$ is open in X, we can choose $\delta > 0$ such that $B(a, \delta) \subseteq f^{-1}(B(f(a), \epsilon))$. Then we have $f(B(a, \delta)) \subseteq B(f(a), \epsilon)$ or, in other words, for all $x \in X$, if $d(x, a) < \delta$ then $d(f(x), f(a)) < \epsilon$. Thus f is continuous at a hence, since a was arbitrary, f is continuous on X.

This completes the proof of Part 1, and Part 2 follows by taking complements since for every set $B \subseteq Y$ we have $(f^{-1}(B))^c = f^{-1}(B^c)$. Indeed for all $x \in A$ we have

$$x \in (f^{-1}(B))^c \iff x \notin f^{-1}(B) \iff f(x) \notin B \iff f(x) \in B^c \iff x \in f^{-1}(B^c).$$

- **5.30 Definition:** Let X and Y be topological spaces and let $f: X \to Y$. We say that f is **continuous** (on X) when $f^{-1}(V)$ is open in X for every open set V in Y. A bijective map $f: X \to Y$ such that both f and f^{-1} are continuous is called a **homeomorphism**.
- **5.31 Theorem:** (Composition of Continuous Functions) Let X, Y and Z be metric spaces (or topological spaces), let $f: X \to Y$, and let $g: Y \to Z$. If f and g are continuous then the composite function $g \circ f: X \to Z$ is continuous.

Proof: Let $h = g \circ f : X \to Z$. If $W \subseteq Z$ is open in Z, then $g^{-1}(W)$ is open in Y (since g is continuous), hence $h^{-1}(W) = f^{-1}(g^{-1}(W))$ is open in X (since f is continuous). Thus h is continuous, by Theorem 5.29 (or by Definition 5.30)

5.32 Example: Let $A = \{(x, y) \in \mathbb{R}^2 \mid y < x^2\}$. Show that A is open in \mathbb{R}^2 .

Solution: We remark that it is surprisingly difficult to show that A is open directly from the definition of an open set (as mentioned in Remark 4.34). But we can make use of the Topological Characterization of Continuity to give a quick proof. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x,y) = y - x^2$. Note that f is continuous (polynomial functions, and indeed all elementary functions, are continuous) and we have $A = \{(x,y) \mid f(x,y) < 0\} = f^{-1}(B)$ where B is the open interval $(-\infty,0)$. Since B is open in \mathbb{R} and f is continuous, it follows that $A = f^{-1}(B)$ is open in \mathbb{R}^2 .

5.33 Example: Recall from Example 4.41 that every set $U \subseteq \mathcal{C}[a,b]$ which is open using the metric d_1 is also open using the metric d_{∞} , but not vice versa. It follows (from Theorem 5.29) that the identity map $I: \mathcal{C} \to \mathcal{C}[a,b]$ given by I(f) = f is continuous as a map from the metric space $(\mathcal{C}[a,b],d_{\infty})$ to the metric space $(\mathcal{C}[a,b],d_1)$, but not vice versa.

Continuity of Linear Maps

5.34 Note: If U and V are inner product spaces and $L: U \to V$ is an inner product space isomorphism, then L and its inverse preserve distance so they are both continuous (we can take $\delta = \epsilon$ in the definition of continuity), hence L is a homeomorphism.

If U and V are finite-dimensional inner product spaces with say $\dim U = n$ and $\dim V = m$, and if $\phi : \mathbb{R}^n \to U$ and $\psi : \mathbb{R}^m \to V$ are inner product space isomorphisms (obtained by choosing orthonormal bases for U and V) then a map $F: U \to V$ is continuous if and only if the composite map $\psi^{-1}F\phi : \mathbb{R}^n \to \mathbb{R}^m$ is continuous. In particular, if F is linear then F is continuous (since $\psi^{-1}F\phi : \mathbb{R}^n \to \mathbb{R}^m$ is linear, hence continuous).

We shall see below (in Corollary 5.39) that the same is true for finite dimensional normed linear spaces: every linear map between finite dimensional normed linear spaces is continuous. But this is not always true (see Example 5.33) for infinite dimensional spaces.

5.35 Theorem: Let U and V be normed linear spaces and let $F: U \to V$ be a linear map. Then the following are equivalent:

- (1) F is Lipschitz continuous on U,
- (2) F is continuous at some point $a \in U$,
- (3) F is continuous at 0, and
- (4) $F(\overline{B}(0,1))$ is bounded.

In this case, if $m \ge 0$ with $F(\overline{B}(0,1)) \subseteq B(0,m)$ then m is a Lipschitz constant for F.

Proof: It is clear that if F is Lipschitz continuous on U then F is continuous at some point $a \in U$ (indeed F is continuous at every point $a \in U$). Let us show that if F is continuous at some point $a \in U$ then F is continuous at 0. Suppose that F is continuous at $a \in U$. Let $\epsilon > 0$. Since F is continuous at $a \in U$, we can choose $\delta_1 > 0$ such that for all $u \in U$ we have $||u - a|| \le \delta_1 \Longrightarrow ||F(u) - F(a)|| \le 1$. Choose $\delta = \delta_1 \epsilon$. Let $x \in U$ with $||x - 0|| < \delta$. If x = 0 then ||F(x) - F(0)|| = ||0|| = 0. Suppose that $x \ne 0$. Then for $u = a + \frac{\delta_1 x}{||x||}$ we have $||u - a|| = \left|\left|\frac{\delta_1 x}{||x||}\right|\right| = \delta_1$ and so $||F(u - a)|| = ||F(u) - F(a)|| \le 1$, that is $||F\left(\frac{\delta_1 x}{||x||}\right)|| \le 1$ hence, by the linearity of F and the scaling property of the norm, we have

$$||F(x) - F(0)|| = ||F(x)|| = \frac{||x||}{\delta_1} ||F(\frac{\delta_1 x}{||x||})|| \le \frac{||x||}{\delta_1} < \frac{\delta_1 \epsilon}{\delta_1} = \epsilon.$$

Thus F is continuous at 0, as required

Next we show that if F is continuous at 0 then $F(\overline{B}(0,1))$ is bounded. Suppose that F is continuous at 0. Choose $\delta > 0$ so that for all $u \in U$ we have $||u|| \le \delta \Longrightarrow ||F(u)|| \le 1$. Let $m = \frac{1}{\delta}$. For $x \in U$, when x = 0 we have $||F(x)|| = 0 \le m$ and when $0 < ||x|| \le 1$ we have

$$||F(x)|| = \left\| \frac{||x||}{\delta} F\left(\frac{\delta x}{||x||}\right) \right\| = \frac{||x||}{\delta} \left\| F\left(\frac{\delta x}{||x||}\right) \right\| \le \frac{||x||}{\delta} = m||x|| \le m.$$

Thus $F(\overline{B}(0,1))$ is bounded, as required.

Finally we show that if $F(\overline{B}(0,1))$ is bounded then F is Lipschitz continuous. Suppose that $F(\overline{B}(0,1))$ is bounded. Choose m>0 so that $\|F(u)\|\leq m$ for all $u\in U$ with $\|u\|\leq 1$. Let $x,y\in U$. If x=y then $\|F(x)-F(y)\|=0$. Suppose that $x\neq y$. Then we have $\|\frac{x-y}{\|x-y\|}\|=1$ so that $\|F(\frac{x-y}{\|x-y\|})\|\leq m$ and so

$$||F(x) - F(y)|| = ||F(x - y)|| = ||x - y|| ||F(\frac{x - y}{||x - y||})|| \le m||x - y||.$$

Thus F is Lipschitz continuous with Lipschitz constant m, as required.

5.36 Example: Define $L: (\mathcal{C}[a,b], d_{\infty}) \to (\mathcal{C}[a,b], d_{\infty})$ by $L(f) = \int_{a}^{x} f(t) dt$. Show that L is Lipschitz continuous.

Solution: Let $f \in \mathcal{C}[a, b]$ with $||f||_{\infty} \leq 1$, that is with $\max_{a \leq x \leq b} |f(x)| \leq 1$. Then

$$||F(f)||_{\infty} = \max_{a \le x \le b} \left| \int_a^x f(t) dt \right| \le \max_{a \le x \le b} \int_a^x 1 dt = \max_{a \le x \le b} |x - a| = |b - a|.$$

Thus $F(\overline{B}(0,1))$ is bounded and so F is uniformly continuous.

5.37 Example: Define $D: (\mathcal{C}^1[0,1], d_{\infty}) \to \mathcal{C}[0,1], d_{\infty})$ by D(f) = f'. Show that D is not continuous.

Solution: For $n \in \mathbb{Z}^+$, define $f_n : [0,1] \to \mathbb{R}$ by $f_n(x) = x^n$. Then $f_n \in \mathcal{C}^1[a,b]$, and $||f_n||_{\infty} = \max_{0 \le x \le 1} |x^n| = 1$ so that $f_n \in B(0,1)$, and $||D(f_n)||_{\infty} = \max_{0 \le x \le 1} |n x^{n-1}| = n$. Thus $D(\overline{B}(0,1))$ is not bounded, so D is not continuous (at any point $g \in \mathcal{C}[0,1]$).

5.38 Theorem: Let U be an n-dimensional normed linear space over \mathbb{R} . Let $\{u_1, \dots, u_n\}$ be any basis for U and let $\phi : \mathbb{R}^n \to U$ be the associated vector space isomorphism given by $\phi(t) = \sum_{k=1}^n t_k u_k$. Then both ϕ and ϕ^{-1} are Lipschitz continuous.

Proof: Let
$$M = \left(\sum_{k=1}^n \|u_k\|^2\right)^{1/2}$$
. For $t \in \mathbb{R}^n$ we have
$$\|\phi(t)\| = \left\|\sum_{k=1}^n t_k u_k\right\| \leq \sum_{k=1}^n |t_k| \|u_k\| \text{ , by the Triangle Inequality,}$$
$$\leq \left(\sum_{k=1}^n t_k^2\right)^{1/2} \left(\sum_{k=1}^n \|u_k\|^2\right)^{1/2} \text{ , by the Cauchy-Schwarz Inequality,}$$

For all $s, t \in \mathbb{R}^n$, $\|\phi(s) - \phi(t)\| = \|\phi(s - t)\| \le M \|s - t\|$, so ϕ is Lipschitz continuous.

Note that the map $N:U\to\mathbb{R}$ given by $N(x)=\|x\|$ is (uniformly) continuous, indeed we can take $\delta=\epsilon$ in the definition of continuity. Since ϕ and N are both continuous, so is the composite $G=N\circ\phi:\mathbb{R}^n\to\mathbb{R}$, which given by $G(t)=\|\phi(t)\|$. By the Extreme Value Theorem, the map G attains its minimum value on the unit sphere $\left\{t\in\mathbb{R}^n\big|\|t\|=1\right\}$, which is compact. Let $m=\min_{\|t\|=1}G(t)=\min_{\|t\|=1}\|\phi(t)\|$. Note that m>0 because when $t\neq 0$ we have $\phi(t)\neq 0$ (since ϕ is a bijective linear map) and hence $\|\phi(t)\|\neq 0$. For $t\in\mathbb{R}^n$, if $\|t\|>1$ then we have $\|\frac{t}{\|t\|}\|=1$ so, by the choice of m,

$$\left\|\phi(t)\right\| = \|t\| \left\|\phi\left(\frac{t}{\|t\|}\right)\right\| \ge \|t\| \cdot m > m.$$

It follows that for all $t \in \mathbb{R}^n$, if $\|\phi(t)\| \le m$ then $\|t\| \le 1$. Since ϕ is bijective, it follows that for $x \in U$, if $\|x\| \le m$ then $\|\phi^{-1}(x)\| \le 1$. Thus for all $x \in U$, if x = 0 then $\|\phi^{-1}(x)\| = 0 = \frac{\|x\|}{m}$ and if $x \ne 0$ then since $\|\frac{mx}{\|x\|}\| = m$ we have

$$\|\phi^{-1}(x)\| = \frac{\|x\|}{m} \|\phi^{-1}(\frac{mx}{\|x\|})\| \le \frac{\|x\|}{m}.$$

For all $x, y \in U$, we have $\|\phi^{-1}(x) - \phi^{-1}(y)\| = \|\phi^{-1}(x - y)\| \le \frac{1}{m} \|x - y\|$, so ϕ^{-1} is Lipschitz continuous.

5.39 Corollary: When U and V are finite-dimensional normed linear spaces, every linear map $F: U \to V$ is Lipschitz continuous.

Proof: Let U and V be finite-dimensional vector spaces and let $F: U \to V$ be linear. Let $\{u_1, \dots, u_n\}$ and $\{v_1, \dots, v_m\}$ be bases for U and V, and let $\phi: \mathbb{R}^n \to U$ and $\psi: \mathbb{R}^m \to V$ be the vector space isomorphisms given by $\phi(t) = \sum_{k=1}^n t_k u_k$ and $\psi(s) = \sum_{k=1}^m s_k v_k$. Since ψ^{-1} and ϕ are both linear, the composite $G = \psi^{-1}F\phi: \mathbb{R}^n \to \mathbb{R}^m$ is linear, hence continuous (linear maps from \mathbb{R}^n to \mathbb{R}^m , using the standard metric, are continuous). By the above theorem, we know that ψ and ϕ^{-1} are continuous, and so the composite map $F = \psi G\phi^{-1}$ is continuous, hence also Lipschitz continuous, by Theorem 5.35.

5.40 Corollary: Any two norms on a finite-dimensional vector space U induce the same topology on U.

Proof: Let U have two norms $\| \|_1$ and $\| \|_2$, inducing two metrics d_1 and d_2 , determining two topologies on U. Let $I:(U,d_1)\to (U,d_2)$ be the identity map (given by I(x)=x), and let $J=I^{-1}:(U,d_2)\to (U,d_1)$ (so J is also the identity map). By the above corollary, I and J are continuous. Let $A\subseteq U$. If A is open in (U,d_1) then, since J is continuous, $J^{-1}(A)$ is open in (U,d_2) , but $J^{-1}(A)=I(A)=A$ and so A is open in (U,d_2) . Similarly, if A is open in (U,d_2) then $A=J(A)=I^{-1}(A)$ is open in (U,d_1) .

5.41 Corollary: Let U be a finite-dimensional vector space. Let $\| \|_1$ and $\| \|_2$ be two norms on U inducing the two metric d_1 and d_2 on U. Let $(x_n)_{n\geq 1}$ be a sequence in U, and let $a\in U$. Then $x_n\to a$ in (U,d_1) if and only if $x_n\to a$ in (U,d_2) .

Proof: Let $I:(U,d_1)\to (U,d_2)$ be the identity map (given by I(x)=x). By Corollary 5.39, I is Lipschitz continuous. Let $\ell\geq 0$ be a Lipschitz constant for I. Suppose that $x_n\to a$ in (U,d_1) . Let $\epsilon>0$. Choose $m\in\mathbb{Z}^+$ such that when $n\geq m$ we have $d_1(x_n,a)<\frac{\epsilon}{\ell+1}$. Then when $n\geq m$ we have $d_2(x_n,a)=d_2\big(I(x_n),I(a)\big)\leq \ell\cdot d_1(x_n,a)<\ell\cdot\frac{\epsilon}{\ell+1}<\epsilon$. Thus $x_n\to a$ in (U,d_2) . Similarly, since the identity map $J:(U,d_2)\to (U,d_1)$ is Lipschitz continuous, it follows that if $x_n toa$ in (U,d_2) then $x_n\to a$ in (U,d_1) . We remark that I and J might have different Lipschits constants (even though I and J are both the identity map from U to itself).