Chapter 3. Sequences and Series of Functions

Pointwise Convergence

3.1 Definition: Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$, and for each integer $n \geq p$ let $f_n: A \to \mathbb{R}$. We say that the sequence of functions $(f_n)_{n>p}$ converges pointwise to f on A, and we write $f_n \to f$ pointwise on A, when $\lim_{n \to \infty} f_n(x) = f(x)$ for all $x \in A$, that is when for all $x \in A$ and for all $\epsilon > 0$ there exists $m \geq p$ such that for all integers n we have

$$n \ge m \Longrightarrow |f_n(x) - f(x)| < \epsilon$$
.

3.2 Note: By the Cauchy Criterion for convergence, the sequence $(f_n)_{n>p}$ converges pointwise to some function f(x) on A if and only if for all $x \in A$ and for all $\epsilon > 0$ there exists $m \geq p$ such that for all integers k, ℓ we have

$$k, \ell \ge m \Longrightarrow |f_k(x) - f_\ell(x)| < \epsilon$$
.

3.3 Example: Find an example of a sequence of functions $(f_n)_{n\geq 1}$ and a function f with $f_n \to f$ pointwise on [0, 1] such that each f_n is continuous but f is not.

Solution: Let
$$f_n(x) = x^n$$
. Then $\lim_{n \to \infty} f_n(x) = \begin{cases} 0 \text{ if } x \neq 1 \\ 1 \text{ if } x = 1. \end{cases}$

3.4 Example: Find an example of a sequence of functions $(f_n)_{n\geq 1}$ and a function f with $f_n \to f$ pointwise on [0, 1] such that each f_n is differentiable and f is differentiable, but $\lim_{n\to\infty} f_n' \neq f'.$

Solution: Let $f_n(x) = \frac{1}{n} \tan^{-1}(nx)$. Then $\lim_{n \to \infty} f_n(x) = 0$, and $f_n'(x) = \frac{1}{1 + (nx)^2}$ so $\lim_{n \to \infty} f_n'(x) = \begin{cases} 0 \text{ if } x \neq 0\\ 1 \text{ if } x = 0. \end{cases}$

3.5 Example: Find an example of a sequence of functions $(f_n)_{n>1}$ and a function f with $f_n \to f$ pointwise on [0, 1] such that each f_n is integrable but f is not.

Solution: We have $\mathbb{Q} \cap [0,1] = \{a_1, a_2, a_3, \cdots\}$ where

$$(a_n)_{n\geq 1} = (\frac{0}{1}, \frac{1}{1}, \frac{0}{2}, \frac{1}{2}, \frac{2}{2}, \frac{0}{3}, \frac{1}{3}, \frac{2}{3}, \frac{3}{3}, \frac{0}{4}, \cdots, \frac{4}{4}, \cdots).$$

(as an exercise, you can check that
$$a_n = \frac{k}{\ell}$$
 where $\ell = \lceil \frac{-3 + \sqrt{9 - 8n}}{2} \rceil$ and $k = n - \frac{\ell^2 + \ell}{2}$). For $x \in [0, 1]$, let $f_n(x) = \begin{cases} 0 \text{ if } x \notin \{a_1, a_2, \cdots, a_n\} \\ 1 \text{ if } x \in \{a_1, a_2, \cdots, a_n\} \end{cases}$. Then $\lim_{n \to \infty} f_n(x) = \begin{cases} 0 \text{ if } x \notin \mathbb{Q} \\ 1 \text{ if } x \in \mathbb{Q} \end{cases}$.

3.6 Example: Find an example of a sequence of functions $(f_n)_{n\geq 1}$ and a function f with $f_n \to f$ pointwise on [0, 1] such that each f_n is integrable and f is integrable but

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx \neq \int_0^1 f(x) \, dx \, .$$

Solution: Let $f_1(x) = \begin{cases} 48\left(x - \frac{1}{2}\right)\left(1 - x\right) & \text{if } \frac{1}{2} \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$ For $n \ge 1$ let $f_n(x) = nf_1(nx)$.

Then each f_n is continuous with $\int_0^1 f_n(x) dx = 1$, and $\lim_{n \to \infty} f_n(x) = 0$ for all x.

Uniform Convergence

3.7 Definition: Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$, and for each integer $n \geq p$ let $f_n: A \to \mathbb{R}$. We say that the sequence of functions $(f_n)_{n\geq p}$ converges uniformly to f on A, and we write $f_n \to f$ uniformly on A, when for all $\epsilon > 0$ there exists $m \in \mathbb{Z}_{\geq p}$ such that for all $x \in A$ and for all integers $n \in \mathbb{Z}_{>p}$ we have

$$n \ge m \Longrightarrow |f_n(x) - f(x)| < \epsilon$$
.

3.8 Theorem: (Cauchy Criterion for Uniform Convergence of Sequences of Functions) Let $(f_n)_{n\geq p}$ be a sequence of functions on $A\subseteq \mathbb{R}$. Then (f_n) converges uniformly (to some function f) on A if and only if for all $\epsilon>0$ there exists $m\in \mathbb{Z}_{\geq p}$ such that for all $x\in A$ and for all integers $k,\ell\in \mathbb{Z}_{\geq p}$ we have

$$k, \ell \ge m \Longrightarrow |f_k(x) - f_\ell(x)| < \epsilon.$$

Proof: Suppose that (f_n) converges uniformly to f on A. Let $\epsilon > 0$. Choose m so that for all $x \in A$ we have $n \geq m \Longrightarrow |f_n(x) - f(x)| < \frac{\epsilon}{2}$. Then for $k, \ell \geq m$ we have $|f_k(x) - f(x)| < \frac{\epsilon}{2}$ and $|f_\ell(x) - f(x)| < \frac{\epsilon}{2}$ and so

$$|f_k(x) - f_\ell(x)| \le |f_k(x) - f(x)| + |f_\ell(x) - f(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Conversely, suppose that (f_n) satisfies the Cauchy Criterion for uniform convergence, that is for all $\epsilon > 0$ there exists m such that for all $x \in A$ and all integers n, ℓ we have

$$n, \ell \ge m \Longrightarrow |f_n(x) - f_\ell(x)| < \epsilon$$
.

For each fixed $x \in A$, $(f_n(x))$ is a Cauchy sequence, so $(f_n(x))$ converges, and we can define f(x) by

$$f(x) = \lim_{n \to \infty} f_n(x) .$$

We know that $f_n \to f$ pointwise on A, but we must show that $f_n \to f$ uniformly on A. Let $\epsilon > 0$. Choose m so that for all $x \in A$ and for all integers n, ℓ we have

$$n, \ell \ge m \Longrightarrow |f_n(x) - f_\ell(x)| < \frac{\epsilon}{2}.$$

Let $x \in A$. Since $\lim_{\ell \to \infty} f_{\ell}(x) = f(x)$, we can choose $\ell \ge m$ so that $\left| f_{\ell}(x) - f(x) \right| < \frac{\epsilon}{2}$. Then for $n \ge m$ we have

$$|f_n(x) - f(x)| \le |f_n(x) - f_\ell(x)| + |f_\ell(x) - f(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

3.9 Theorem: (Uniform Convergence, Limits and Continuity) Suppose that $f_n \to f$ uniformly on A. Let x be a limit point of A. If $\lim_{y \to x} f_n(y)$ exists for each n, then

$$\lim_{y \to x} \lim_{n \to \infty} f_n(y) = \lim_{n \to \infty} \lim_{y \to x} f_n(y).$$

In particular, if each f_n is continuous in A, then so is f.

Proof: Suppose that $\lim_{y\to x} f_n(y)$ exists for all n. Let $b_n = \lim_{y\to x} f_n(y)$. We must show that $\lim_{y\to x} f(y) = \lim_{n\to\infty} b_n$. We claim first that (b_n) converges. Let $\epsilon > 0$. Since (f_n) converges uniformly, it satisfies the Cauchy criterion, so we can choose m so that $k, \ell \geq m \Longrightarrow |f_k(y) - f_\ell(y)| < \frac{\epsilon}{3}$ for all $y \in A$. Let $k, \ell \geq m$. Since $f_k(y) \to b_k$ and $f_\ell(y) \to b_\ell$ as $y \to x$, we can choose $y \in A$ so that $|f_k(y) - b_k| < \frac{\epsilon}{3}$ and $|f_\ell(y) - b_\ell| < \frac{\epsilon}{3}$. Then we have

$$|b_k - b_\ell| \le |b_k - f_k(y)| + |f_k(y) - f_\ell(y)| + |f_\ell(y) - b_\ell| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

By the Cauchy Criterion for sequences, (b_n) converges, as claimed.

Now, let $b = \lim_{n \to \infty} b_n$. We must show that $\lim_{y \to x} f(y) = b$. Let $\epsilon > 0$. Since $f_n \to f$ uniformly, we can choose m_1 so that $n \ge m_1 \Longrightarrow \left| f_n(y) - f(y) \right| < \frac{\epsilon}{3}$ for all $y \in A$, and since $b_n \to b$ we can choose m_2 so $n \ge m_2 \Longrightarrow |b_n - b| < \frac{\epsilon}{3}$. Let $m = \max\{m_1, m_2\}$. Let $n \ge m$. Since $\lim_{y \to x} f_n(y) = b_n$ we can choose $\delta > 0$ so that $0 < |y - x| < \delta \Longrightarrow \left| f_n(y) - b_n \right| < \frac{\epsilon}{3}$. Then when $0 < |y - x| < \delta$ we have

$$|f(y) - b| \le |f(y) - f_n(y)| + |f_n(y) - b_n| + |b_n - b| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Thus $\lim_{y \to x} f(y) = b$, as required.

In particular, if $x \in A$ and each f_n is continuous at x then we have

$$\lim_{y \to x} f(y) = \lim_{y \to x} \lim_{n \to \infty} f_n(y) = \lim_{n \to \infty} \lim_{y \to x} f_n(y) = \lim_{n \to \infty} f_n(x) = f(x)$$

so f is continuous at x.

3.10 Theorem: (Uniform Convergence and Integration) Suppose that $f_n \to f$ uniformly on [a,b]. If each f_n is integrable on [a,b] then so is f. In this case, if $g_n(x) = \int_a^x f_n(t) dt$ and $g(x) = \int_a^x f(t) dt$, then $g_n \to g$ uniformly on [a,b]. In particular, we have

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b \lim_{n \to \infty} f_n(x) \, dx \, .$$

Proof: Suppose that each f_n is integrable on [a, b]. We claim that f is integrable on [a, b]. Let $\epsilon > 0$. Choose N so that $n \ge N \Longrightarrow \left| f_n(x) - f(x) \right| < \frac{\epsilon}{4(b-a)}$ for all $x \in [a, b]$. Fix $n \ge N$. Choose a partition X of [a, b] so that $U(f_n, X) - L(f_n, X) < \frac{\epsilon}{2}$. Note that since $\left| f_n(x) - f(x) \right| < \frac{\epsilon}{4(b-a)}$ we have $M_i(f) < M_i(f_n) + \frac{\epsilon}{4(b-a)}$ and $m_i(f) > m_i(f_n) - \frac{\epsilon}{4(b-a)}$, and so

$$U(f,X) - L(f,X) = \sum_{i=1}^{n} \left(M_i(f) - m_i(f) \right) \Delta_i x < \sum_{i=1}^{n} \left(M_i(f_n) - m_i(f_n) + \frac{\epsilon}{2(b-a)} \right) \Delta_i x$$
$$= U(f_n,X) - L(f_n,X) + \frac{\epsilon}{2} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus f is integrable on [a, b].

Now define $g_n(x) = \int_a^x f_n(t) dt$ and $g(x) = \int_a^x f(t) dt$. We claim that $g_n \to g$ uniformly on [a,b]. Let $\epsilon > 0$. Choose N so that $n \ge N \Longrightarrow \left| f_n(t) - f(t) \right| < \frac{\epsilon}{2(b-a)}$ for all $t \in I$. Let $n \ge N$. Let $x \in [a,b]$. Then we have

$$|g_n(x) - g(x)| = \left| \int_a^x f_n(t) dt - \int_a^x f(t) dt \right| = \left| \int_a^x f_n(t) - f(t) dt \right|$$

$$\leq \int_a^x |f_n(t) - f(t)| dt \leq \int_a^x \frac{\epsilon}{2(b-a)} dt = \frac{\epsilon}{2(b-a)} (x-a) \leq \frac{\epsilon}{2} < \epsilon.$$

Thus $g_n \to g$ uniformly on [a, b], as required.

In particular, we have $\lim_{n\to\infty} g_n(b) = g(b)$, that is

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b \lim_{n \to \infty} f_n(x) \, dx \, .$$

3.11 Theorem: (Uniform Convergence and Differentiation) Let (f_n) be a sequence of functions on [a,b]. Suppose that each f_n is differentiable on [a,b], (f_n) converges uniformly on [a,b], and $(f_n(c))$ converges for some $c \in [a,b]$. Then (f_n) converges uniformly on [a,b], $\lim_{n\to\infty} f_n(x)$ is differentiable, and

$$\frac{d}{dx}\lim_{n\to\infty}f_n(x)=\lim_{n\to\infty}\frac{d}{dx}f_n(x).$$

Proof: We claim that (f_n) converges uniformly on [a, b]. Let $\epsilon > 0$. Choose N so that when $n, m \ge N$ we have $\left| f_n'(t) - f_m'(t) \right| < \frac{\epsilon}{2(b-a)}$ for all $t \in [a, b]$ and we have $\left| f_n(c) - f_m(c) \right| < \frac{\epsilon}{2}$. Let $n, m \ge N$. Let $x \in [a, b]$. By the Mean Value Theorem applied to the function $f_n(x) - f_m(x)$, we can choose t between t0 and t1 so that

$$(f_n(x) - f_m(x) - f_n(c) + f_m(c)) = (f_n'(t) - f_m'(t))(x - c).$$

Then we have

$$|f_n(x) - f_m(x)| \le |f_n(x) - f_m(x) - f_n(c) + f_m(c)| + |f_n(c) - f_m(c)|$$

$$= |f_n'(t) - f_m'(t)| |x - c| + |f_n(c) - f_m(c)|$$

$$< \frac{\epsilon}{2(b-a)} (b-a) + \frac{\epsilon}{2} = \epsilon.$$

Thus (f_n) converges uniformly on [a, b].

Let $f(x) = \lim_{n \to \infty} f_n(x)$. We claim that f is differentiable with $f'(x) = \lim_{n \to \infty} f_n'(x)$ for all $x \in [a, b]$. Fix $x \in [a, b]$. Note that

$$f'(x) = \lim_{n \to \infty} f_n'(x) \iff \lim_{y \to x} \frac{f(y) - f(x)}{y - x} = \lim_{n \to \infty} \lim_{y \to x} \frac{f_n(y) - f_n(x)}{y - x}$$
$$\iff \lim_{y \to x} \lim_{n \to \infty} \frac{f_n(y) - f_n(x)}{y - x} = \lim_{n \to \infty} \lim_{y \to x} \frac{f_n(y) - f_n(x)}{y - x}$$

so it suffices to show that (g_n) converges uniformly on $[a,b] \setminus \{x\}$, where

$$g_n(y) = \frac{f_n(y) - f_n(x)}{y - x}.$$

Let $\epsilon > 0$. Choose N so that $n, m \geq N \Longrightarrow |f_n'(t) - f_m'(t)| < \epsilon$ for all $t \in [a, b]$. Let $n, m \geq N$. Let $y \in [a, b] \setminus \{x\}$. By the Mean Value Theorem, we can choose t between x and y so that

$$(f_n(y) - f_m(y) - f_n(x) + f_m(x)) = (f_n'(t) - f_m'(t))(y - x).$$

Then

$$|g_n(y) - g_m(y)| = \left| \frac{f_n(y) - f_m(y) - f_n(x) + f_m(x)}{y - x} \right| = |f_n'(t) - f_m'(t)| < \epsilon.$$

Thus (g_n) converges uniformly on $[a, b] \setminus \{x\}$, as required.

Series of Functions

3.12 Definition: Let $(f_n)_{n\geq p}$ be a sequence of functions on $A\subseteq\mathbb{R}$. The series of functions $\sum_{n\geq p} f_n(x)$ is defined to be the sequence $(S_l(x))$ where $S_l(x) = \sum_{n=n}^{\infty} f_n(x)$. The function $S_l(x)$ is called the l^{th} partial sum of the series. We say the series $\sum_{n=1}^{\infty} f_n(x)$ converges pointwise (or uniformly) on A when the sequence $\{S_l\}$ converges, pointwise (or uniformly) on A. In this case, the **sum** of the series of functions is defined to be the function

$$f(x) = \sum_{n=n}^{\infty} f_n(x) = \lim_{l \to \infty} S_l(x).$$

3.13 Theorem: (Cauchy Criterion for the Uniform Convergence of a Series of Functions) The series $\sum_{n\geq n} f_n(x)$ converges uniformly (to some function f) on A if and only if for every $\epsilon > 0$ there exists $N \geq p$ such that for all $x \in A$ and for all $k, \ell \geq p$ we have

$$\ell > k \ge N \Longrightarrow \left| \sum_{n=k+1}^{\ell} f_n(x) \right| < \epsilon.$$

Proof: This follows immediately from the analogous theorem for sequences of functions.

3.14 Theorem: (Uniform Convergence, Limits and Continuity) Suppose that $\sum_{i=1}^{n} f_n(x)$ converges uniformly on A. Let x be a limit point of A. If $\lim_{y\to x} f_n(y)$ exists for all $n\geq p$, then

$$\lim_{y \to x} \sum_{n=p}^{\infty} f_n(y) = \sum_{n=p}^{\infty} \lim_{y \to x} f_n(y).$$

In particular, if each $f_n(x)$ is continuous on A then so is $\sum_{n=0}^{\infty} f_n(x)$.

Proof: This follows immediately from the analogous theorem for sequences of functions.

3.15 Theorem: (Uniform Convergence and Integration) Suppose that $\sum_{n\geq p} f_n(x)$ converges uniformly on [a,b]. If each $f_n(x)$ is integrable on [a,b], then so is $\sum_{n=0}^{\infty} f_n(x)$. In this case,

if we define $g_n(x) = \int_a^x f_n(t) dt$ and $g(x) = \int_a^x \sum_{n=n}^\infty f_n(t) dt$, then $\sum_{n>p} g_n(x)$ converges uniformly to g(x) on A. In particular, we have

$$\int_a^b \sum_{n=p}^\infty f_n(x) dx = \sum_{n=p}^\infty \int_a^b f_n(x) dx.$$

Proof: This follows immediately from the analogous theorem for sequences of functions.

5

3.16 Theorem: (Uniform Convergence and Differentiation) Suppose that each $f_n(x)$ is differentiable on [a,b], $\sum_{n\geq p} f_n'(x)$ converges uniformly on [a,b], and $\sum_{n\geq p} f_n(c)$ converges for some $c\in [a,b]$. Then $\sum_{n\geq p} f_n(x)$ converges uniformly on [a,b] and

$$\frac{d}{dx}\sum_{n=p}^{\infty}f_n(x) = \sum_{n=p}^{\infty}\frac{d}{dx}f_n(x).$$

Proof: This follows immediately from the analogous theorem for sequences of functions.

3.17 Theorem: (The Weierstrass M-Test) Suppose that f_n is bounded with $|f_n(x)| \leq M_n$ for all $n \geq p$ and $x \in A$, and $\sum_{n \geq p} M_n$ converges. Then $\sum_{n \geq p} f_n(x)$ converges uniformly on A.

Proof: Let $\epsilon > 0$. Choose N so that $\ell > k \ge N \Longrightarrow \sum_{n=k+1}^{\ell} M_n < \epsilon$. Let $\ell > k \ge N$. Let $x \in A$. Then

$$\left| \sum_{n=k+1}^{\ell} f_n(x) \right| \le \sum_{n=k+1}^{\ell} \left| f_n(x) \right| \le \sum_{n=k+1}^{\ell} M_n < \epsilon.$$

3.18 Example: Find a sequence of functions $(f_n(x))_{n\geq 0}$, each of which is differentiable on \mathbb{R} , such that $\sum_{n\geq 0} f_n(x)$ converges uniformly on \mathbb{R} , but the sum $f(x) = \sum_{n=0}^{\infty} f_n(x)$ is nowhere differentiable.

Solution: Let $f_n(x) = \frac{1}{2^n} \sin^2(8^n x)$. Since $|f_n(x)| \leq \frac{1}{2^n}$ and $\sum \frac{1}{2^n}$ converges, $\sum_{n\geq 0} f_n(x)$

converges uniformly on \mathbb{R} . Let $f(x) = \sum_{n=0}^{\infty} f_n(x)$. We claim that f(x) is nowhere differen-

tiable. Let $x \in \mathbb{R}$. For each n, let m, a_n and b_n be such that $a_n = \frac{m\pi}{2 \cdot 8^n}$, $b_n = \frac{(m+1)\pi}{2 \cdot 8^n}$ and $x \in [a_n, b_n)$. Note that one of $f_n(a_n)$ and $f_n(b_n)$ is equal to $\frac{1}{2^n}$ and the other is equal to 0 so we have $\left|f_n(b_n) - f_n(a_n)\right| = \frac{1}{2^n}$. Note also that for k > n we have $f_k(a_n) = f_k(b_n) = 0$. Also, for all k we have $f_k(x) = \frac{1}{2^k} \sin^2(8^k x)$, $f_k'(x) = 4^k \sin(2 \cdot 8^k x)$, and $\left|f_k'(x)\right| \leq 4^k$, so by the Mean Value Theorem,

$$\left| f_k(b_n) - f_k(a_n) \right| \le 4^k |b_n - a_n|.$$

Finally, note that if f'(x) did exist, then we would have $f'(x) = \lim_{n \to \infty} \frac{f(b_n) - f(a_n)}{b_n - a_n}$, but

$$\left| \frac{f(b_n) - f(a_n)}{b_n - a_n} \right| = \left| \sum_{k=0}^{\infty} \frac{f_k(b_n) - f_k(a_n)}{b_n - a_n} \right| = \left| \sum_{k=0}^{n} \frac{f_k(b_n) - f_k(a_n)}{b_n - a_n} \right|$$

$$\geq \left| \frac{f_n(b_n) - f_n(a_n)}{b_n - a_n} \right| - \sum_{k=0}^{n-1} \left| \frac{f_k(b_n) - f_k(a_n)}{b_n - a_n} \right|$$

$$\geq \frac{\frac{1}{2^n}}{\frac{\pi}{2 \cdot 8^n}} - \sum_{k=0}^{n-1} 4^k = \frac{2 \cdot 4^n}{\pi} - \frac{4^n - 1}{3} = \left(\frac{2}{\pi} - \frac{1}{3}\right) 4^n + \frac{1}{3} \to \infty \text{ as } n \to \infty$$

Power Series

- **3.19 Definition:** A power series centred at a is a series of the form $\sum_{n\geq 0} a_n(x-a)^n$ for some real numbers a_n , where we use the convention that $(x-a)^0 = 1$.
- **3.20 Example:** The geometric series $\sum_{n\geq 0} x^n$ is a power series centred at 0. It converges when |x|<1 and for all such x the sum of the series is

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \,.$$

3.21 Lemma: (Abel's Formula) Let $\{a_n\}$ and $\{b_n\}$ be sequences. Then we have

$$\sum_{n=m}^{l} a_n b_n + \sum_{p=m}^{l-1} \left(\sum_{n=m}^{p} a_n \right) (b_{p-1} - b_p) = \left(\sum_{n=m}^{l} a_n \right) b_l.$$

Proof: We have

$$\sum_{p=m}^{l-1} \left(\sum_{k=m}^{p} a_n \right) (b_{p+1} - b_p) = a_m (b_{m+1} - b_m) + (a_m + a_{m+1})(b_{m+2} - b_{m+1})$$

$$+ (a_m + a_{m+1} + a_{m+2})(b_{m+3} - b_{m+2})$$

$$+ \dots + (a_m + a_{m+1} + a_{m+2} + \dots + a_{l-1})(b_l - b_{l-1})$$

$$= -a_m b_m - a_{m+1} b_{m+1} - \dots - a_{l-1} b_{l-1}$$

$$+ (a_m + a_{m+1} + \dots + a_{l-1}) b_l - a_l b_l + a_l b_l$$

$$= \left(\sum_{n=m}^{l} a_n \right) b_l - \sum_{n=m}^{l} a_n b_n .$$

- **3.22 Definition:** Let (a_n) be a sequence in \mathbb{R} . We define $\limsup_{n\to\infty} a_n = \lim_{n\to\infty} s_n$ where $s_n = \sup\{a_k \mid k \geq n\}$ (with $\limsup_{n\to\infty} a_n = \infty$ when (a_n) is not bounded above).
- **3.23 Theorem:** (The Interval and Radius of Convergence) Let $\sum_{n\geq 0} a_n(x-a)^n$ be a power

series and let $R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}} \in [0, \infty]$. Then the set of $x \in \mathbb{R}$ for which the power

series converges is an interval I centred at a of radius R. Indeed

- (1) if |x-a| > R then $\lim_{n \to \infty} a_n(x-a) \neq 0$ so $\sum_{n \ge 0} n_n(x-a)^n$ diverges,
- (2) if |x-a| < R then $\sum_{n=0}^{\infty} a_n (x-a)^n$ converges absolutely,
- (3) if 0 < r < R then $\sum_{n \ge 0}^{\infty} a_n (x a)^n$ converges uniformly in [a r, a + r], and
- (4) (Abel's Theorem) if $\sum_{n\geq 0} a_n(x-a)^n$ converges when x=a+R then the convergence is

uniform on [a, a + R], and similarly if $\sum_{n \geq 0} a_n (x - a)^n$ converges when x = a - R then the convergence is uniform on [a - R, a].

Proof: To prove part (1), suppose that |x-a| > R. Then

$$\limsup_{n \to \infty} \sqrt[n]{|a_n(x-a)^n|} = |x-a| \limsup_{n \to \infty} \sqrt[n]{|a_n|} > R \cdot \frac{1}{R} = 1,$$

and so $\lim_{n\to\infty} a_n(x-a)^n \neq 0$ and $\sum a_n(x-a)^n$ diverges, by the Root Test.

To prove part (2), suppose that |x - a| < R. Then

$$\limsup_{n \to \infty} \sqrt[n]{|a_n(x-a)^n|} = |x-a| \limsup_{n \to \infty} \sqrt[n]{|a_n|} < R \cdot \frac{1}{R} = 1,$$

and so $\sum |a_n(x-a)^n|$ converges, by the Root Test.

To prove part (3), fix 0 < r < R. By part (2), $\sum |a_n(x-a)^n|$ converges when x = a+r, that is $\sum |a_nr^n|$ converges. Let $x \in [a-r,a+r]$. Then $|a_n(x-a)^n| \le |a_nr^n|$ and $\sum |a_nr^n|$ converges, and so $\sum |a_n(x-a)^n|$ converges uniformly by the Weierstrass M-Test.

Now let us prove part (4). Suppose that $\sum a_n(x-a)^n$ converges when x=a+R,

that is
$$\sum a_n R^n$$
 converges. Let $\epsilon > 0$. Choose N so that $l > m > N \Longrightarrow \left| \sum_{n=m}^l a_n R^n \right| < \epsilon$.

Then by Abel's Formula and using telescoping we have

$$\left| \sum_{n=m}^{l} a_n (x-a)^n \right| = \left| \sum_{n=m}^{l} a_n R^n \left(\frac{x-a}{R} \right)^n \right|$$

$$= \left| \left(\sum_{n=m}^{l} a_n R^n \right) \left(\frac{x-a}{R} \right)^l - \sum_{p=m}^{l-1} \left(\sum_{n=m}^{p} a_n R^n \right) \left(\left(\frac{x-a}{R} \right)^{p+1} - \left(\frac{x-a}{R} \right)^p \right) \right|$$

$$\leq \left| \sum_{n=m}^{l} a_n R^n \right| \left(\frac{x-a}{R} \right)^l + \sum_{p=m}^{l-1} \left| \sum_{n=m}^{p} a_n R^n \right| \left(\left(\frac{x-a}{R} \right)^p - \left(\frac{x-a}{R} \right)^{p+1} \right)$$

$$< \epsilon \left(\frac{x-a}{R} \right)^l + \epsilon \left(\left(\frac{x-a}{R} \right)^m - \left(\frac{x-a}{R} \right)^l \right) = \epsilon \left(\frac{x-a}{R} \right)^m < \epsilon.$$

- **3.24 Definition:** The number R in the above theorem is called the **radius of convergence** of the power series, and the interval I is called the **interval of convergence** of the power series.
- **3.25 Example:** Find the interval of convergence of the power series $\sum_{n>1} \frac{(3-2x)^n}{\sqrt{n}}$.

Solution: First note that this is in fact a power series, since $\frac{(3-2x)^n}{\sqrt{n}} = \frac{(-2)^n}{\sqrt{n}} \left(x-\frac{3}{2}\right)^n$,

and so
$$\sum_{n\geq 1} \frac{(3-2x)^n}{\sqrt{n}} = \sum_{n\geq 0} c_n (x-a)^n$$
, where $c_0 = 0$, $c_n = \frac{(-2)^n}{\sqrt{n}}$ for $n \geq 1$ and $a = \frac{3}{2}$.

Now, let
$$a_n = \frac{(3-2x)^n}{\sqrt{n}}$$
. Then $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(3-2x)^{n+1}}{\sqrt{n+1}} \frac{\sqrt{n}}{(3-2x)^n} \right| = \sqrt{\frac{n}{n+1}} |3-2x|$,

so $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = |3-2x|$. By the Ratio Test, $\sum a_n$ converges when |3-2x| < 1 and diverges when |3-2x| > 1. Equivalently, it converges when $x \in (1,2)$ and diverges when $x \notin [1,2]$. When x=1 so (3-2x)=1, we have $\sum a_n = \sum \frac{1}{\sqrt{n}}$, which diverges (its a p-series), and when x=2 so (3-2x)=-1, we have $\sum a_n = \sum \frac{(-1)^n}{\sqrt{n}}$ which converges by the Alternating Series Test. Thus the interval of convergence is I=(1,2].

Operations on Power Series

3.26 Theorem: (Continuity of Power Series) Suppose that the power series $\sum a_n(x-a)^n$ converges in an interval I. Then the sum $f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n$ is continuous in I.

Proof: This follows from uniform convergence of $\sum a_n(x-a)^n$ in closed subintervals of I.

3.27 Theorem: (Addition and Subtraction of Power Series) Suppose that the power series $\sum a_n(x-a)^n$ and $\sum b_n(x-a)^n$ both converge in the interval I. Then $\sum (a_n+b_n)(x-a)^n$ and $\sum (a_n-b_n)(x-a)^n$ both converge in I, and for all $x \in I$ we have

$$\left(\sum_{n=0}^{\infty} a_n (x-a)^n\right) \pm \left(\sum_{n=0}^{\infty} b_n (x-a)^n\right) = \sum_{n=0}^{\infty} (a_n \pm b_n) (x-a)^n.$$

Proof: This follows from Linearity.

3.28 Theorem: (Multiplication of Power Series) Suppose the power series $\sum a_n(x-a)^n$ and $\sum b_n(x-a)^n$ both converge in an open interval I with $a \in I$. Let $c_n = \sum_{k=0}^n a_k b_{n-k}$. Then $\sum c_n(x-a)^n$ converges in I and for all $x \in I$ we have

$$\sum_{n=0}^{\infty} c_n (x-a)^n = \left(\sum_{n=0}^{\infty} a_n (x-a)^n\right) \left(\sum_{n=0}^{\infty} b_n (x-a)^n\right).$$

Proof: This follows from the Multiplication of Series Theorem, since the power series converge absolutely in I.

3.29 Theorem: (Division of Power Series) Suppose that $\sum a_n(x-a)^n$ and $\sum b_n(x-a)^n$ both converge in an open interval I with $a \in I$, and that $b_0 \neq 0$. Define c_n by

$$c_0 = \frac{a_0}{b_0}$$
, and for $n > 0$, $c_n = \frac{a_n}{b_0} - \frac{b_n c_0}{b_0} - \frac{b_{n-1} c_1}{b_0} - \cdots - \frac{b_1 c_{n-1}}{b_0}$.

Then there is an open interval J with $a \in J$ such that $\sum c_n(x-a)^n$ converges in J and for all $x \in J$,

$$\sum_{n=0}^{\infty} c_n (x-a)^n = \frac{\sum_{n=0}^{\infty} a_n (x-a)^n}{\sum_{n=0}^{\infty} b_n (x-a)^n}.$$

Proof: Choose r > 0 so that $a + r \in I$. Note that $\sum |a_n r^n|$ and $\sum |b_n r^n|$ both converges. Since $|a_n r^n| \to 0$ and $|b_n r^n| \to 0$ and $b_0 \neq 0$, we can choose M so that $M \geq \left|\frac{a_n r^n}{b_0}\right|$ and $M \geq \left|\frac{b_n r^n}{b_0}\right|$ for all n. Note that $|c_0| = \left|\frac{a_0}{b_0}\right| \leq M$ and since $c_1 = \frac{a_1}{b_0} + \frac{b_1 c_0}{b_0}$ we have

$$|c_1 r| \le \left| \frac{a_1 r}{b_0} \right| + \left| \frac{b_1 r}{b_0} \right| |c_0| \le M + M^2 = M(1 + M).$$

Suppose, inductively, that $|c_k r^k| \leq M(1+M)^k$ for all k < n. Then since

$$a_n = b_n c_0 + b_{n-1} c_1 + \dots + b_1 c_{n-1} + b_0 c_n$$

we have

$$|c_n r^n| \le \left| \frac{a_n r^n}{b_0} \right| + \left| \frac{b_n r^n}{b_0} \right| |c_0| + \left| \frac{b_{n-1} r^{n-1}}{b_0} \right| |c_1 r| + \dots + \left| \frac{b_1 r}{b_0} \right| |c_{n-1} r^{n-1}|$$

$$\le M + M^2 + M^2 (1+M) + M^2 (1+M)^2 + M^2 (1+M)^3 + \dots + M^2 (1+M)^{n-1}$$

$$= M + M^2 \left(\frac{(1+M)^n - 1}{M} \right) = M(1+M)^n.$$

Bu induction, we have $|c_n r^n| \le M(1+M)^n$ for all $n \ge 0$. Let $J_1 = \left(a - \frac{r}{1+M}, a + \frac{r}{1+M}\right)$. Let $x \in J_1$ so $|x-a| < \frac{r}{1+M}$. Then for all n we have

$$|c_n(x-a)^n| = |c_n r^n| \cdot \frac{1}{(1+M)^n} \cdot \left| \frac{x-a}{r/(1+M)} \right|^n \le M \left| \frac{x-a}{r/(1+M)} \right|^n$$

and so $\sum |c_n(x-a)^n|$ converges by the Comparison Test.

Note that from the definition of c_n we have $a_n = \sum_{k=0}^n c_k b_{n-k}$, and so by multiplying power series, we have

$$\left(\sum_{n=0}^{\infty} c_n (x-a)^n\right) \left(\sum_{n=0}^{\infty} b_n (x-a)^n\right) = \sum_{n=0}^{\infty} a_n (x-a)^n$$

for all $x \in I \cap J_1$. Finally note that $f(x) = \sum_{n=0}^{\infty} b_n (x-a)^n$ is continuous in I and we have $f(0) = b_0 \neq 0$, and so there is an interval $J \subset I \cap J_1$ with $a \in J$ such that $f(x) \neq 0$ in J.

3.30 Theorem: (Composition of Power Series) Let $f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$ in an open

interval I with $a \in I$, and let $g(y) = \sum_{m=0}^{\infty} b_m (y-b)^m$ in an open interval J with $b \in J$ and with $a_0 \in J$. Let K be an open interval with $a \in K$ such that $f(K) \subset J$. For each $m \geq 0$, let $c_{n,m}$ be the coefficients, found by multiplying power series, such that $\sum_{n=0}^{\infty} c_{n,m} (x-a)^n = b_n \left(\sum_{n=0}^{\infty} a_n (x-a)^n - b\right)^m$. Then $\sum_{m\geq 0} c_{n,m}$ converges for all $m \geq 0$, and for all $x \in K$, $\sum_{m\geq 0} \left(\sum_{m=0}^{\infty} c_{n,m}\right) (x-a)^n$ converges and

$$\sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} c_{n,m} \right) (x-a)^n = g(f(x)).$$

Proof: This follows from Fubini's Theorem for Series since

$$g(f(x)) = \sum_{m=0}^{\infty} b_m (f(x) - b)^m = \sum_{m=0}^{\infty} b_m \left(\sum_{n=0}^{\infty} a_n (x - a)^n - b \right) = \sum_{m=0}^{\infty} \left(\sum_{n=0}^{\infty} c_{n,m} (x - a)^n \right).$$

3.31 Theorem: (Integration of Power Series) Suppose that $\sum a_n(x-a)^n$ converges in the interval I. Then for all $x \in I$, the sum $f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n$ is integrable on [a,x] (or [x,a]) and

$$\int_{a}^{x} \sum_{n=0}^{\infty} a_n (t-a)^n dt = \sum_{n=0}^{\infty} \int_{a}^{x} a_n (t-a)^n dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-a)^{n+1}.$$

Proof: This follows from uniform convergence.

3.32 Theorem: (Differentiation of Power Series) Suppose that $\sum a_n(x-a)^n$ converges in the open interval I. Then the sum $f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n$ is differentiable in I and

$$f'(x) = \sum_{n=1}^{\infty} n a_n (x-a)^{n-1}$$
.

Proof: We claim that the radius of convergence of $\sum a_n(x-a)^n$ is equal to the radius of convergence of $\sum na_n(x-a)^{n-1}$. Let R be the radius of convergence of $\sum a_n(x-a)^n$ and let S be the radius of convergence of $\sum na_n(x-a)^{n-1}$. Fix $x \in (a-R,a+R)$ so |x-a| < R and $\sum |a_n(x-a)^n|$ converges. Choose r,s with |x-a| < r < s < R. Since $\lim_{n\to\infty} \frac{(r/s)^n}{(1/n)} = 0$, we can choose N so that $n \ge N \Longrightarrow \left(\frac{r}{s}\right)^n < \frac{1}{n}$. Then for $n \ge N$ we have

$$\left| na_n(x-a)^n \right| = \left| n\left(\frac{r}{s}\right)^n \left(\frac{x-a}{r}\right)^n a_n s^n \right| \le 1 \cdot 1 \cdot |a_n s^n|.$$

Since $\sum |a_n s^n|$ converges, $\sum |na_n(x-a)^n|$ converges by the Comparison Test, and so $\sum |na_n(x-a)^{n-1}|$ converges by Linearity. Thus $R \leq S$.

Now fix $x \in (a-S, a+s)$ so that |x-a| < S and $\sum |na_n(x-a)^{n-1}|$ converges. Then $\sum |na_n(x-a)^n|$ converges by Linearity, and $|a_n(x-a)^n| \le |na_n(x-a)^n|$ so $\sum |a_n(x-a)^n|$ converges by Comparison. Thus $S \le R$ and so R = S as claimed.

The theorem now follows from the uniform convergence of $\sum na_n(x-a)^{n-1}$.

3.33 Example: We have $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$ for |x| < 1. By Integration of Power Series, $\ln x = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$ for |x| < 1. In particular, we can take $x = \frac{1}{2}$ to get $\ln \frac{3}{2} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot 2^n}$ and we can take $x = -\frac{1}{2}$ to get $\ln \frac{1}{2} = \sum_{n=1}^{\infty} \frac{-1}{n \cdot 2^n}$, that is $\ln 2 = \sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n}$.

Let us also argue that we can also take x=1. Note that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$ diverges when x=-1 (by the Integral Test) and converges when x=1 (by the Alternating Series Test), so the interval of convergence is (-1,1]. Thus the sum $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$ is defined for $-1 < x \le 1$. We know already that $f(x) = \ln(1+x)$ for -1 < x < 1. By Abel's Theorem, the series converges uniformly on [0,1], so by the Continuity of Power Series Theorem, the sum $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} x^n$ is continuous on [0,1] and in particular f(x) is continuous at x=1. Since $f(x) = \ln(1+x)$ for |x| < 1 and and since both f(x) and $\ln(1+x)$ are continuous at 1 it follows that $f(1) = \ln 2$. Thus we have $\ln 2 = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.

Taylor Series

3.34 Theorem: Suppose that $f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$ in an open interval I centred at a.

Then f is infinitely differentiable at a and for all $n \geq 0$ we have

$$a_n = \frac{f^{(n)}(a)}{n!} \,,$$

where $f^{(n)}(a)$ denotes the n^{th} derivative of f at a.

Proof: By repeated application of the Differentiation of Power Series Theorem, for all $x \in I$, we have $f'(x) = \sum_{n=1}^{\infty} n a_n (x-a)^{n-1}$, $f''(x) = \sum_{n=2}^{\infty} n (n-1) a_n (x-a)^{n-2}$ and $f'''(x) = \sum_{n=3}^{\infty} n (n-1) (n-2) a_n (x-a)^{n-3}$, and in general

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)a_n(x-a)^{n-k}$$

and so $f(a)=a_0, f'(a)=a_1, f''(a)=2\cdot 1$ a_2 and $f'''(a)=3\cdot 2\cdot 1$ a_3 , and in general

$$f^{(n)}(a) = n! \ a_n$$

3.35 Definition: Given a function f(x) whose derivatives of all order exist at x = a, we define the **Taylor series** of f(x) centered at a to be the power series

$$T(x) = \sum_{n>0} a_n (x-a)^n$$
 where $a_n = \frac{f^{(n)}(a)}{n!}$

and we define the l^{th} Taylor Polynomial of f(x) centered at a to be the l^{th} partial sum

$$T_l(x) = \sum_{n=0}^{l} a_n (x - a)^n$$
 where $a_n = \frac{f^{(n)}(a)}{n!}$

3.36 Example: Find the Taylor series centered at 0 for $f(x) = e^x$.

Solution: We have $f^{(n)}(x) = e^x$ for all n, so $f^{(n)}(0) = 1$ and $a_n = \frac{1}{n!}$ for all $n \ge 0$. Thus the Taylor series is

$$T(x) = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + x + \frac{1}{2!} x^2 = \frac{1}{3!} x^3 + \frac{1}{4!} x^4 + \cdots$$

3.37 Example: Find the Taylor series centered at 0 for $f(x) = \sin x$.

Solution: We have $f'(x) = \cos x$, $f''(x) = -\sin x$, $f'''(x) = -\cos x$, $f''''(x) = \sin x$ and so on, so that in general $f^{(2n)}(x) = (-1)^n \sin x$ and $f^{(2n+1)}(x) = (-1)^n \cos x$. It follows that $f^{(2n)}(0) = 0$ and $f^{(2n+1)}(0) = (-1)^n$, so we have $a_{2n} = 0$ and $a_{2n+1} = \frac{(-1)^n}{(2n+1)!}$. Thus

$$T(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \cdots$$

12

3.38 Example: Find the Taylor series centered at 0 for $f(x) = (1+x)^p$ where $p \in \mathbb{R}$.

Solution: $f'(x) = p(1+x)^{p-1}$, $f''(x) = p(p-1)(1+x)^{p-2}$, $f'''(x) = p(p-1)(p-2)(1+x)^{p-3}$, and in general

 $f^{(n)}(x) = p(p-1)(p-2)\cdots(p-n+1)(1+x)^{p-n},$

so f(0) = 1, f'(0) = p, f''(0) = p(p-1), and in general $f^{(n)}(0) = p(p-1)(p-2)\cdots(p-n+1)$, and so we have $a_n = \frac{p(p-1)(p-2)\cdots(p-n+1)}{n!}$. Thus the Taylor series is

$$T(x) = \sum_{n=0}^{\infty} \binom{p}{n} x^n = 1 + px + \frac{p(p-1)}{2!} x^2 + \frac{p(p-1)(p-2)}{3!} x^3 + \frac{p(p-1)(p-2)(p-3)}{4!} x^4 + \cdots$$

where we use the notation

$$\binom{p}{0} = 1$$
, and for $n \ge 1$, $\binom{p}{n} = \frac{p(p-1)(p-2)\cdots(p-n+1)}{n!}$

3.39 Theorem: (Taylor) Let f(x) be infinitely differentiable in an open interval I with $a \in I$. Let $T_l(x)$ be the l^{th} Taylor polynomial for f(x) centered at a. Then for all $x \in I$ there exists a number c between a and x such that

$$f(x) - T_l(x) = \frac{f^{(l+1)}(c)}{(l+1)!} (x-a)^{l+1}.$$

Proof: When x=a both sides of the above equation are 0. Suppose that x>a (the case that x<a is similar). Since $f^{(l+1)}$ is differentiable and hence continuous, by the Extreme Value Theorem it attains its maximum and minimum values, say M and m. Since $m \le f^{(l+1)}(t) \le M$ for all $t \in I$, we have

$$\int_{a}^{t_{1}} m \, dt \le \int_{a}^{t_{1}} f^{(l+1)}(t) \, dt \le \int_{a}^{t_{1}} M \, dt$$

that is

$$m(t_1 - a) \le f^{(l)}(t_1) - f^{(l)}(a) \le M(t_1 - a)$$

for all $t_1 > a$ in I. Integrating each term with respect to t_1 from a to t_2 , we get

$$\frac{1}{2}m(t_2-a)^2 \le f^{(l-1)}(t_2) - f^{(l)}(a)(t_2-a) \le \frac{1}{2}M(t_t-a)^2$$

for all $t_2 > a$ in I. Integrating with respect to t_2 from a to t_3 gives

$$\frac{1}{3!}m(t_3-a)^3 \le f^{(l-2)}(t_3) - f^{(l-2)}(a) - \frac{1}{2}f^{(l)}(a)(t_3-a)^3 \le \frac{1}{3!}M(t_3-a)^3$$

for all $t_3 > a$ in I. Repeating this procedure eventually gives

$$\frac{1}{(l+1)!}m(t_{l+1}-a)^{l+1} \le f(t_{l+1}) - T_l(t_{l+1}) \le \frac{1}{(l+1)!}M(t_{l+1}-a)^{l+1}$$

for all $t_{l+1} > a$ in I. In particular $\frac{1}{(l+1)!} m(x-a)^{l+1} \le f(x) - T_l(x) \le \frac{1}{(l+1)!} M(x-a)^{l+1}$, so

$$m \le (f(x) - T_l(x)) \frac{(l+1)!}{(x-a)^{l+1}} \le M$$
.

By the Intermediate Value Theorem, there is a number $c \in [a, x]$ such that

$$f^{(l+1)}(c) = (f(x) - T_l(x)) \frac{(l+1)!}{(x-a)^{l+1}}$$

.

3.40 Theorem: The functions e^x , $\sin x$ and $(1+x)^p$ are all exactly equal to the sum of their Taylor series centered at 0 in the interval of convergence.

Proof: First let $f(x) = e^x$ and let $x \in \mathbb{R}$. By Taylor's Theorem, $f(x) - T_l(x) = \frac{e^c x^{l+1}}{(l+1)!}$ for some c between 0 and x, and so

$$|f(x) - T_l(x)| \le \frac{e^{|x|}|x|^{l+1}}{(l+1)!}.$$

Since $\sum \frac{e^{|x|}|x|^{l+1}}{(l+1)!}$ converges by the Ratio Test, we have $\lim_{l\to\infty} \frac{e^{|x|}|x|^{l+1}}{(l+1)!} = 0$ by the Divergence Test, so $\lim_{l\to\infty} \left(f(x) - T_l(x)\right) = 0$, and so $f(x) = \lim_{l\to\infty} T_l(x) = T(x)$.

Now let $f(x) = \sin x$ and let $x \in \mathbb{R}$. By Taylor's Theorem, $f(x) - T(x) = \frac{f^{(l+1)}(c) x^{l+1}}{(l+1)!}$

for some c between 0 and x. Since $f^{(l+1)}(x)$ is one of the functions $\pm \sin x$ or $\pm \cos x$, we have $|f^{(l+1)}(c)| \leq 1$ for all c and so

$$|f(x) - T(x)| \le \frac{|x|^{l+1}}{(l+1)!}$$
.

Since $\sum \frac{|x|^{l+1}}{(l+1)!}$ converges by the Ratio Test, $\lim_{l\to\infty} \frac{|x|^{l+1}}{(l+1)!} = 0$ by the Divergence Test, and so we have and f(x) = T(x) as above.

Finally, let $f(x) = (1+x)^p$. The Taylor series centered at 0 is

$$T(x) = 1 + px + \frac{p(p-1)}{2!}x^2 + \frac{p(p-1)(p-2)}{3!}x^3 + \frac{p(p-1)(p-2)(p-3)}{4!}x^4 + \cdots$$

and it converges for |x| < 1. Differentiating the power series gives

$$T'(x) = p + \frac{p(p-1)}{1!}x + \frac{p(p-1)(p-2)}{2!}x^2 + \frac{p(p-1)(p-2)(p-3)}{3!}x^3 + \cdots$$

and so

$$(1+x)T'(x) = p + \left(p + \frac{p(p-1)}{1!}\right)x + \left(\frac{p(p-1)}{1!} + \frac{p(p-1)(p-2)}{2!}\right)x^2$$

$$+ \left(\frac{p(p-1)(p-2)}{2!} - \frac{p(p-1)(p-2)(p-3)}{3!}\right)x^3 + \cdots$$

$$= p + \frac{p \cdot p}{1!}x + \frac{p \cdot p(p-1)}{2!}x^2 + \frac{p \cdot p(p-1)(p-2)}{3!}x^3 + \cdots$$

$$= pT(x).$$

Thus we have (1+x)T'(x)=pT(x) with T(0)=1. This DE is linear since we can write it as $T'(x)-\frac{p}{1+x}T(x)=0$. An integrating factor is $\lambda=e^{\int -\frac{p}{1+x}\,dx}=e^{-p\ln(1+x)}=(1+x)^{-p}$ and the solution is $T(x)=(1+x)^{-p}\int 0\,dx=b(1+x)^p$ for some constant b. Since T(0)=1 we have b=1 and so $T(x)=(1+x)^p=f(x)$.