1: (a) Define $f: \mathbb{R}^2 \to \mathbb{R}^2$ by $f(x,y) = \left(x, \frac{y}{2}\right)$. Show that $d\left(f(u), f(v)\right) \leq d(u,v)$ for all $u, v \in \mathbb{R}^2$, determine whether f is a contraction map, and determine whether f has a unique fixed point in \mathbb{R}^2 .

Solution: For u = (a, b) and v = (c, d) we have

$$d\big(f(u),f(v)\big) = \left| \left(a-c,\tfrac{1}{2}(b-d)\right) \right| = \sqrt{(a-b)^2 + \tfrac{1}{4}(c-d)^2} \leq \sqrt{(a-c)^2 + (b-d)^2} = \left| (a-c,b-d) \right| = d(u,v).$$

Note that f does not have a unique fixed point because f(x,0) = (x,0) for all $x \in \mathbb{R}$. Since \mathbb{R}^2 is complete and f does not have a unique fixed point, it cannot be a contraction map by the Banach Fixed Point Theorem.

(b) The polynomial $p(x) = x^3 - 3x + 1$ has a unique root in $\left[0, \frac{1}{2}\right]$. Approximate this root using the Banach Fixed Point Theorem as follows: Let $f(x) = \frac{1}{3}(x^3 + 1)$. Show that $f: \left[0, \frac{1}{2}\right] \to \left[0, \frac{1}{2}\right]$ is a contraction map whose unique fixed point is the desired root of p. Approximate the root by using a calculator to find x_5 where $x_0 = 0$ and $x_{n+1} = f(x_n)$.

Solution: We have $f'(x)=x^2$. Since f'(x)>0 for x>0, it follows that f is (strictly) increasing for $x\geq 0$ (see Corollary 1.56), and since $f(0)=\frac{1}{3}$ and $f\left(\frac{1}{2}\right)=\frac{3}{8}$ we have $f:\left[0,\frac{1}{2}\right]\to\left[\frac{1}{3},\frac{3}{8}\right]\subseteq\left[0,\frac{1}{2}\right]$ (see Problem 3(a) on Assignment 1). Let $x,y\in\left[0,\frac{1}{2}\right]$. By the Mean Value Theorem we can choose t between x and y so that f(x)-f(y)=f'(t)(x-y). Since t is between x and y, we have $0\leq t\leq\frac{1}{2}$ hence $0\leq t^2\leq\frac{1}{4}$, that is $0\leq f'(t)\leq\frac{1}{4}$. Thus $\left|f(x)-f(y)\right|=\left|f'(t)\right|\left|x-y\right|\leq\frac{1}{4}\left|x-y\right|$ so that f is a contraction map with contraction constant $c=\frac{1}{4}$. Using a calculator, we find that $x_0=0,\ x_1\cong 0.3333333,\ x_2\cong 0.345679,\ x_3\cong 0.347102,\ x_4\cong 0.347273$ and $x_5\cong 0.347294$.

We remark that Newton's Method for finding this root (which many students will have seen) amounts to finding the fixed point of the contraction map $g(x) = x - \frac{p(x)}{p'(x)} = \frac{2x^3 - 1}{3(x^2 - 1)}$, and the resulting sequence converges faster than the sequence we found above (because, letting a be the root that we are approximating, when we repeatedly apply f on smaller intervals the contraction constant approaches $f'(a) = a^2 \cong 0.12$ but f is a factor of f so when we repeatedly apply f the contraction constant approaches f'(a) = 0.

We also remark that the exact value of the root that we are approximating is $a = 2\sin\frac{\pi}{6} = 2\sin(10^{\circ})$.

- 2: (a) Define $F: \mathbb{R}^2 \to \mathbb{R}$ by $F(x,y) = 3y^{2/3}$. Determine whether F satisfies the hypothesis of Picard's Theorem, whether F satisfies the hypothesis of Peano's Theorem, and whether there exists $\delta > 0$ such that the differential equation $\frac{dy}{dx} = F(x,y)$ has a unique solution y = f(x) with f(0) = 0, defined for all $x \in (-\delta, \delta)$.
 - Solution: The function F does satisfy the hypothesis of Peano's Theorem, because it is continuous. There does not exist $\delta>0$ such that the differential equation $\frac{dy}{dx}=F(x,y)=3\,y^{2/3}$ has a unique solution y=f(x) with f(0)=0, defined for all $x\in(-\delta,\delta)$ because, given $\delta>0$, for all $c\in[0,\delta)$ the function $f:(-\delta,\delta)\to\mathbb{R}$ given by f(x)=0 for $x\leq c$ and $f(x)=(x-c)^3$ for $x\geq c$ is a solution. Since the differential equation does not have a unique solution, it follows that F cannot satisfy the hypothesis of Picard's Theorem.
 - (b) Let $a_1, a_2, \dots, a_n \in \mathbb{R}^n$ with say $a_k = (a_{k,1}, a_{k,2}, \dots, a_{k,n})$, and let $A \in M_n(\mathbb{R})$ be that matrix with entries $a_{k,\ell}$. By applying the Banach Fixed Point Theorem to the map $F: (\mathbb{R}^n, d_{\infty}) \to (\mathbb{R}^n, d_{\infty})$ given by F(x) = Ax + b, where $b \in \mathbb{R}^n$, show that if $||a_k||_1 < 1$ for all indices k then the matrix I A is invertible.

Solution: Let $b \in \mathbb{R}^n$. Suppose that $||a_k||_1 < 1$ for all indices k. Choose $c \in [0,1)$ so that $||a_k||_{\infty} \le c$ for all k. For all $x, y \in \mathbb{R}^n$ we have

$$\begin{aligned} \|F(x) - F(y)\|_{\infty} &= \|A(x - y)\|_{\infty} = \max_{1 \le k \le n} \sum_{i=1}^{n} a_{k,i} (x - y)_{i} \le \max_{1 \le k \le n} \sum_{i=1}^{n} a_{k,i} \|x - y\|_{\infty} \\ &\le \max_{1 \le k \le n} \sum_{i=1}^{n} |a_{k,i}| \|x - y\|_{\infty} = \max_{1 \le k \le n} \|a_{k}\|_{1} \cdot \|x - y\|_{\infty} \le c \|x - y\|_{\infty} \end{aligned}$$

so that $F:(\mathbb{R}^n,d_\infty)\to(\mathbb{R}^n,d_\infty)$ is a contraction map. Since (\mathbb{R}^n,d_∞) is complete and F is a contraction map, it follows from the Banach Fixed Point Theorem that there is a unique element $x\in\mathbb{R}^n$ such that x=F(x)=Ax+b, that is a unique $x\in\mathbb{R}^n$ such that (I-A)x=b. Since the equation (I-A)x=b has a solution for every $b\in\mathbb{R}^n$, it follows that the $n\times n$ matrix I-A has rank n, so it is invertible.

3: (a) Find D(A, B) where D is the Hausdorff metric and A is the line segment in \mathbb{R}^2 from (0,0) to (3,4) and B is the line segment in \mathbb{R}^2 from (0,1) to (4,3).

Solution: For $a \in A$, the distance d(a,B) is maximized when a is an endpoint of A. It is clear that $d\left((0,0),B\right) = d\left((0,0),(0,1)\right) = 1$. The line through (3,4) perpendicular to B is the line y = 10 - 2x, and it meets the line containing B, which is given by given by $y = 1 + \frac{1}{2}x$, at the point $\left(\frac{18}{5},\frac{14}{5}\right)$ (which is in B), so we have $d\left((3,4),B\right) = d\left((3,4),\left(\frac{18}{5},\frac{14}{5}\right)\right) = \sqrt{\left(\frac{3}{5}\right)^2 + \left(\frac{6}{5}\right)^2} = \frac{3}{\sqrt{5}}$. We have $\frac{3}{\sqrt{5}} > 1$ (since $3 > \sqrt{5}$) so $\max_{a \in A} d(a,B) = \frac{3}{\sqrt{5}}$.

The line through (0,1) perpendicular to A is given by $y=1-\frac{3}{4}x$, and it meets the line containing A, which is given by $y=\frac{4}{3}x$, at the point $\left(\frac{12}{25},\frac{16}{25}\right)$ (which in in A), so we have $d\left((0,1),A\right)=d\left((0,1),\left(\frac{12}{25},\frac{16}{25}\right)=\sqrt{\left(\frac{12}{25}\right)^2+\left(\frac{9}{25}\right)^2}=\frac{3}{25}\sqrt{4^2+3^2}=\frac{3}{5}$. The line through (3,4) perpendicular to A is given by $y=6-\frac{3}{4}x$, and it meets the line through A at $\left(\frac{72}{25},\frac{96}{25}\right)$ (which is in A), so we have $d\left((4,3),A\right)=d\left((4,3),\left(\frac{76}{25}\right),\left(\frac{96}{25}\right)\right)=\sqrt{\left(\frac{28}{25}\right)^2+\left(\frac{21}{25}\right)^2}=\frac{7}{25}\sqrt{4^2+3^3}=\frac{7}{5}$. Since $\frac{7}{5}>\frac{3}{5}$ we have $\max_{b\in B}d(b,A)=\frac{7}{5}$. Note that $\frac{7}{5}>\frac{3}{\sqrt{5}}$ (because $\frac{7}{5}>\frac{3}{\sqrt{5}}\iff 7>3\sqrt{5}\iff 49>45$), so $D(A,B)=\max\left\{\max_{a\in A}d(a,B),\max_{b\in B}d(b,A)\right\}=\max\left\{\frac{3}{\sqrt{5}},\frac{7}{5}\right\}=\frac{7}{5}$.

(b) Let K be the set of all nonempty compact sets in \mathbb{R}^2 . Show that for every closed set $C \subseteq \mathbb{R}^2$ (in the standard metric), the set $S = \{A \in K \mid A \subseteq C\}$ is closed in K, using the Hausdorff metric.

Solution: Let $C \subseteq \mathbb{R}^2$ be closed (in the standard metric) and let $S = \{A \in K \mid A \subseteq C\}$. We claim that S is closed in K, or equivalently that the complement $S^c = K \setminus S$ is open in K. Let $B \in S^c$, in other words, let B be a non-empty compact set which is not contained in C. Choose $b \in B$ with $b \notin C$. Since C is closed in \mathbb{R}^2 , so that its complement $C^c = \mathbb{R}^2 \setminus C$ is open in \mathbb{R}^2 , we can choose r > 0 so that $B_{\mathbb{R}^2}(b,r) \subseteq C^c$, where $B_{\mathbb{R}^2}(b,r) = \{x \in \mathbb{R}^2 \mid |x-b| < r\}$. We claim that $B_K(B,r) \subseteq S^c$, where $B_K(B,r) = \{A \in K \mid D(A,B) < r\}$. Let $A \in K$ with D(A,B) < r. Since D(A,B) < r we have $\max_{x \in B} d(x,A) < r$, so in particular we have d(b,A) < r. Since d(b,A) < r, we can choose $a \in A$ such that d(b,a) < r. Since $a \in B_{\mathbb{R}^2}(b,r) \subseteq C^c$ we have $a \in C^c$, that is $a \notin C$. Since $a \in A$ with $a \notin C$, we have $A \not\subseteq C$ so that $A \in S^c$. This shows that $B_K(B,R) \subseteq S^c$ so that S^c is open in K, and hence S is closed in K, as claimed.

4: (a) Let K_n be the set of $x \in [0,1]$ which can be written in base 5 so that the first n digits are not equal to 2 (that is the numbers of the form $x = \sum_{k=1}^{\infty} \frac{x_k}{5^k}$ with $x_k \in \{0,1,3,4\}$ for $k \le n$ and $x_k \in \{0,1,2,3,4\}$ for k > n) and let $C = \bigcap_{k=1}^{\infty} K_n$. Find the total length L_n of each set K_n and hence the total length $L = \lim_{n \to \infty} L_n$ of C.

Solution: Let $K_0 = [0, 1]$. We have $K_1 = \left[0, \frac{1}{5}\right] \cup \left[\frac{1}{5}, \frac{2}{5}\right] \cup \left[\frac{3}{5}, \frac{4}{5}\right] \cup \left[\frac{3}{5}, \frac{4}{5}\right] \cup \left[\frac{3}{5}, \frac{4}{5}\right]$. The set K_n is a union of 4^n closed intervals, which only overlap at endpoints, each of length $\frac{1}{5^n}$, and K_{n+1} is obtained from K_n by partitioning each of its interval of size $\frac{1}{5^n}$ into 5 equal closed subintervals of (each of size $\frac{1}{5^{n+1}}$) and removing the middle interval, leaving 4 intervals of size $\frac{1}{5^{n+1}}$ (two adjacent intervals on the left and two adjacent intervals on the right). To be explicit, K_n is the union of the 4^n intervals $\left[c, c + \frac{1}{5^n}\right]$ where c is of the form $c = \sum_{k=1}^n \frac{a_k}{5^k}$ with each $a_k \in \{0, 1, 3, 4\}$. Since K_n is a union of 4^n intervals of size $\frac{1}{5^n}$ (intersecting only at endpoints), the total length is $L_n = \left(\frac{4}{5}\right)^n$. The total length of C is $\lim_{n \to \infty} L_n = \lim_{n \to \infty} \left(\frac{4}{5}\right)^n = 0$.

(b) Find the area inside the Koch snowflake (described in Example 7.21).

Solution: The region inside (and on) the Koch snowflake can be constructed as follows. We begin with an equilateral triangle T_0 of side length 1, with 3 edges. We attach 3 equilateral triangles of side-length $\frac{1}{3}$, one along the middle third of each edge of T_0 , to obtain T_1 , which is the union of 1 triangle of side-length 1 and 3 of side-length $\frac{1}{3}$ with $3 \cdot 4 = 12$ external edges each of length $\frac{1}{3}$. Having constructed T_n , which has $3 \cdot 4^n$ external edges of length $\frac{1}{3^n}$, we attach $3 \cdot 4^n$ triangles of side-length $\frac{1}{3^{n+1}}$, one along the middle third of each edge of T_n to obtain T_{n+1} . Then the Koch snowflake is the set $K = \bigcup_{n=1}^{\infty} T_n$, which is the union of 1 triangle of side-length 1, 3 triangles of side-length $\frac{1}{3^n}$ for each $n \geq 1$.

An equilateral triangle of side-length ℓ has area $\frac{1}{2} \cdot \ell \cdot \frac{\sqrt{3}}{2} \ell = \frac{\sqrt{3}}{4} \ell^2$, so the area of the region in the Koch curve is

$$A = 1 \cdot \frac{\sqrt{3}}{4} + 3 \cdot \frac{\sqrt{3}}{4} \cdot \frac{1}{3^2} + 3 \cdot 4 \cdot \frac{\sqrt{3}}{4} \cdot \frac{1}{3^4} + 3 \cdot 4^2 \cdot \frac{\sqrt{3}}{4} \cdot \frac{1}{3^6} + 3 \cdot 4^3 \cdot \frac{\sqrt{3}}{4} \cdot \frac{1}{3^8} + \cdots$$

$$= \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{12} \left(1 + \frac{4}{9} + \left(\frac{4}{9} \right)^2 + \left(\frac{4}{9} \right)^3 + \cdots \right) = \frac{\sqrt{3}}{4} \left(1 + \frac{1}{3} \cdot \frac{1}{1 - \frac{4}{9}} \right) = \frac{\sqrt{3}}{4} \cdot \left(1 + \frac{3}{5} \right) = \frac{2\sqrt{3}}{5}.$$

5: (a) Find the exact similarity dimension of the self-similar set R shown below in blue.

Solution: R is equal to the union of m=3 copies of itself scaled by $s=\frac{1}{2}$, so $d_{\text{sim}}(R)=\frac{\ln m}{\ln \frac{1}{2}}=\frac{\ln 3}{\ln 2}$.

(b) Find the exact similarity dimension of the self-similar shape S shown below in brown, and find formulas for similarities F_1 , F_2 and F_3 such that $S = F_1(S) \cup F_2(S) \cup F_3(S)$.

Solution: We can, for example, take $F_1\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{4}\begin{pmatrix} x \\ y \end{pmatrix}$, $F_2\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2}\begin{pmatrix} x \\ y \end{pmatrix} + \binom{1/2}{0}$ and $F_3\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2}\begin{pmatrix} x \\ y \end{pmatrix} + \binom{1/4}{\sqrt{3}/4}$. There are other possible choices, for example we could reflect in the line y = x and take $F_1\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{4}\begin{pmatrix} y \\ x \end{pmatrix}$. Since there is one similarity of scaling factor $\frac{1}{4}$ and two of scaling factor $\frac{1}{2}$, the similarity dimension $d = d_{\text{sim}}(S)$ is given by $\left(\frac{1}{4}\right)^d + 2\left(\frac{1}{2}\right)^d = 1$. Letting $u = \left(\frac{1}{2}\right)^d$, we have $u^2 + 2u - 1 = 0$, and so $u = \frac{-2\pm\sqrt{4+4}}{2} = -1 \pm\sqrt{2}$. Since u > 0 we have $u = -1 + \sqrt{2}$, that is $\left(\frac{1}{2}\right)^d = \sqrt{2} - 1$, so $2^d = \frac{1}{\sqrt{2} - 1} = 1 + \sqrt{2}$, hence $d = \frac{\ln(1+\sqrt{2})}{\ln 2}$.

(c) Find the exact similarity dimension of T, and find the exact coordinates of 3 points which lie in T, where T is the self-similar shape shown below in green, with $T = G_1(T) \cup G_2(T) \cup G_3(T)$ where G_1 , G_2 and G_3 are given by

$$G_1 \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{50} \begin{pmatrix} 9 \, x + 9 \sqrt{3} \, y + 25 \sqrt{3} \\ -9 \sqrt{3} \, x + 9 \, y + 25 \end{pmatrix} \; , \; G_2 \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{50} \begin{pmatrix} 9 \, x - 9 \sqrt{3} \, y - 25 \sqrt{3} \\ 9 \sqrt{3} \, x + 9 \, y + 25 \end{pmatrix} \; , \; G_3 \begin{pmatrix} x \\ y \end{pmatrix} = \frac{3}{5} \begin{pmatrix} x \\ y + 5 \end{pmatrix} .$$

Solution: Note that $G_1\begin{pmatrix} x \\ y \end{pmatrix} = \frac{9}{25}\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix}$ and $G_2\begin{pmatrix} x \\ y \end{pmatrix} = \frac{9}{25}\begin{pmatrix} \frac{1}{2} - \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix}$ (and the two matrices are both rotation matrices), so the maps G_1 and G_2 both scale by $\frac{9}{25}$, and G_3 scales by $\frac{3}{5}$. The similarity dimension $d = d_{\text{sim}}(T)$ is given by $2\left(\frac{9}{25}\right)^d + \left(\frac{3}{5}\right)^d = 1$. Letting $u = \left(\frac{3}{5}\right)^d$, we have $0 = 2u^2 + u - 1 = (2u - 1)(u + 1)$ so that $u = \frac{1}{2}$ (since u > 0). Since $\left(\frac{3}{5}\right)^d = \frac{1}{2}$ we have $d = \frac{\ln\frac{1}{2}}{\ln\frac{3}{5}} = \frac{\ln 2}{\ln\frac{5}{3}}$.

Recall that for any $a \in \mathbb{R}^2$ we have $F^n(\{a\}) \to T$ (in the space of nonempty compact sets using the Hausdorff metric). If a is a fixed point of one of the maps F_k then $a \in F^n(\{a\})$ for all n, so that a is in the limiting set T. We have $G_3\binom{x}{y} = \binom{x}{y} \iff \left(\frac{3}{5}x = x \text{ and } \frac{3}{5}y + 3 = y\right) \iff \binom{x}{y} = \binom{0}{\frac{15}{2}}$, and hence $\binom{0}{\frac{15}{2}} \in T$. We also have $G_1\binom{0}{\frac{15}{2}} = \frac{9}{25}\binom{\frac{1}{2}}{-\frac{\sqrt{3}}{2}}\binom{1}{2}\binom{0}{\frac{15}{2}} + \binom{\frac{\sqrt{3}}{2}}{\frac{1}{2}}\binom{1}{100}\binom{185\sqrt{3}}{185} = \frac{37}{20}\binom{\sqrt{3}}{1} \in T$ and $G_2\binom{0}{\frac{15}{2}} = \frac{37}{20}\binom{-\sqrt{3}}{1} \in T$

