- 1: (a) Define $f: \mathbb{R}^2 \to \mathbb{R}^2$ by $f(x,y) = \left(x, \frac{y}{2}\right)$. Show that $d\left(f(u), f(v)\right) \leq d(u,v)$ for all $u, v \in \mathbb{R}^2$, determine whether f is a contraction map, and determine whether f has a unique fixed point in \mathbb{R}^2 .
 - (b) The polynomial $p(x) = x^3 3x + 1$ has a unique root in $\left[0, \frac{1}{2}\right]$. Approximate this root using the Banach Fixed Point Theorem as follows: Let $f(x) = \frac{1}{3}(x^3 + 1)$. Show that $f: \left[0, \frac{1}{2}\right] \to \left[0, \frac{1}{2}\right]$ is a contraction map whose unique fixed point is the desired root of p. Approximate the root by using a calculator to find x_5 where $x_0 = 0$ and $x_{n+1} = f(x_n)$.
- 2: (a) Define $F: \mathbb{R}^2 \to \mathbb{R}$ by $F(x,y) = 3y^{2/3}$. Determine whether F satisfies the hypothesis of Picard's Theorem, whether F satisfies the hypothesis of Peano's Theorem, and whether there exists $\delta > 0$ such that the differential equation $\frac{dy}{dx} = F(x,y)$ has a unique solution y = f(x) with f(0) = 0, defined for all $x \in (-\delta, \delta)$.
 - (b) Let $a_1, a_2, \dots, a_n \in \mathbb{R}^n$ with say $a_k = (a_{k,1}, a_{k,2}, \dots, a_{k,n})$, and let $A \in M_n(\mathbb{R})$ be that matrix with entries $a_{k,\ell}$. By applying the Banach Fixed Point Theorem to the map $F: (\mathbb{R}^n, d_{\infty}) \to (\mathbb{R}^n, d_{\infty})$ given by F(x) = Ax + b, where $b \in \mathbb{R}^n$, show that if $||a_k||_1 < 1$ for all indices k then the matrix I A is invertible.
- **3:** (a) Find D(A, B) where D is the Hausdorff metric and A is the line segment in \mathbb{R}^2 from (0,0) to (3,4) and B is the line segment in \mathbb{R}^2 from (0,1) to (4,3).
 - (b) Let K be the set of all nonempty compact sets in \mathbb{R}^2 . Show that for every closed set $C \subseteq \mathbb{R}^2$ (in the standard metric), the set $S = \{A \in K \mid A \subseteq C\}$ is closed in K, using the Hausdorff metric.
- **4:** (a) Let K_n be the set of $x \in [0,1]$ which can be written in base 5 so that the first n digits are not equal to 2 (that is the numbers of the form $x = \sum_{k=1}^{\infty} \frac{x_k}{5^k}$ with $x_k \in \{0,1,3,4\}$ for $k \leq n$ and $x_k \in \{0,1,2,3,4\}$ for k > n) and let $C = \bigcap_{k=1}^{\infty} K_n$. Find the total length L_n of each set K_n and hence the total length $L = \lim_{n \to \infty} L_n$ of C.
 - (b) Find the area inside the Koch snowflake (constructed starting with an equilateral triangle with unit sides).
- 5: (a) Find the exact similarity dimension of the self-similar set R shown below in blue.
 - (b) Find the exact similarity dimension of the self-similar shape S shown below in brown, and find formulas for similarities F_1 , F_2 and F_3 such that $S = F_1(S) \cup F_2(S) \cup F_3(S)$.
 - (c) Find the exact similarity dimension of T, and find the exact coordinates of 3 points which lie in T, where T is the self-similar shape shown below in green, with $T = G_1(T) \cup G_2(T) \cup G_3(T)$ where G_1 , G_2 and G_3 are given by

$$G_1 \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{50} \begin{pmatrix} 9 \, x + 9 \sqrt{3} \, y + 25 \sqrt{3} \\ -9 \sqrt{3} \, x + 9 \, y + 25 \end{pmatrix} \; , \; G_2 \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{50} \begin{pmatrix} 9 \, x - 9 \sqrt{3} \, y - 25 \sqrt{3} \\ 9 \sqrt{3} \, x + 9 \, y + 25 \end{pmatrix} \; , \; G_3 \begin{pmatrix} x \\ y \end{pmatrix} = \frac{3}{5} \begin{pmatrix} x \\ y + 5 \end{pmatrix} .$$





