1: For each of the following sets A in \mathbb{R}^n (using its standard metric), determine whether A is complete and whether A is compact.

(a)
$$A = \left\{ (a, b, c, d) \in \mathbb{R}^4 \,\middle|\, \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right)^2 = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \right\}.$$

Solution: We have $\binom{a\ b}{c\ d}^2 = \binom{a^2+bc\ ab+bd}{ac+cd\ bc+d^2}$ and hence

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \iff \begin{pmatrix} a^2 + bc = a, ab + bd = b, ac + cd = d \text{ and } d^2 + bc = d \end{pmatrix}.$$

The set A is closed because each of the four functions $f_k: \mathbb{R}^4 \to \mathbb{R}$ given by $f_1(a,b,c,d) = a^2 + bc - a$, $f_2(a,b,c,d) = ab + bd - b$, $f_3(a,b,c,d) = ac + cd - d$ and $f_4(a,b,c,d) = d^2 + bc - d$ is continuous, so that each of the sets four $f_k^{-1}(0)$ is closed, and we have $A = \bigcap_{k=1}^4 f_k^{-1}(0)$. Since A is closed, it is complete. Note that A is unbounded because for every $0 < t \in \mathbb{R}$ we have $\frac{1}{2}(1,t,\frac{1}{t},1) \in A$. Since A is unbounded it is not compact.

(b)
$$A = \left\{ x \in \mathbb{R}^3 \mid ||x|| = \frac{n-1}{n^2} \text{ for some } n \in \mathbb{Z}^+ \right\}.$$

Solution: Let $(r_n)_{n\geq 1}$ be the sequence given by $r_n=\frac{n-1}{n^2}$ and let $R=\{r_n\,|\,n\in\mathbb{Z}^+\}$. Note that $r_1=0$, and $r_2=\frac{1}{4}$, and r_n is strictly decreasing for $n\geq 2$ because for $f(x)=\frac{x-1}{x^2}$ we have $f'(x)=\frac{x^2-2x(x-1)}{x^4}=\frac{x(2-x)}{x^4}$ so that f'(2)=0 and f'(x)<0 for x>2. Because $r_1=0$ and $r_2=\frac{1}{4}$ and (r_n) is decreasing for $n\geq 2$, it follows that $\max R=r_2=\frac{1}{4}$, and hence A is bounded with $A\subseteq \overline{B}(0,\frac{1}{4})$ (because when $x\in A$ we have $\|x\|\in R$ so that $\|x\|\leq \max R=\frac{1}{4}$).

We claim that A is closed. Because $r_1=0$ and $r_2=\frac{1}{4}$ and (r_n) is strictly decreasing for $n\geq 2$ with $\lim_{n\to\infty}r_n=0$, it follows that $[0,\infty)\setminus R=\bigcup_{n=1}^\infty I_n$ where $I_1=\left(\frac{1}{4},\infty\right)$ and $I_n=(r_{n+1},r_n)$ for $n\geq 2$. For each $n\in\mathbb{Z}^+$, let $U_n=\left\{x\in\mathbb{R}^3\ \big|\ \|x\|\in I_n\right\}$, and note that each of the sets U_n is open in \mathbb{R}^3 : indeed $U_1=\left\{x\in\mathbb{R}^3\ \big|\ \|x\|>\frac{1}{4}\right\}=\overline{B}\left(0,\frac{1}{4}\right)^c$, which is open, and for $n\geq 2$ we have $U_n=\left\{x\in\mathbb{R}^3\ \big|\ r_{n+1}<\|x\|< r\right\}=B\left(0,r_n\right)\cap\overline{B}(0,r_{n+1})^c$, which is open. Finally note that for $x\in\mathbb{R}^3$, we have

$$A^c = \left\{ x \in \mathbb{R}^3 \mid ||x|| \notin R \right\} = \left\{ x \in \mathbb{R}^3 \mid ||x|| \in \bigcup_{n=1}^{\infty} I_n \right\} = \bigcup_{n=1}^{\infty} U_n$$

which is open in \mathbb{R}^3 (since it is a union of open sets). Since A^c is open, it follows that A is closed, as claimed. Since A is closed, it is complete, and since A is closed and bounded, it is compact.

2: For each of the following sets A, determine whether A is complete and whether A is compact.

(a)
$$A = \left\{ x \in \mathbb{R}^{\infty} \mid ||x||_{\infty} \le 1 \right\} \subseteq \mathbb{R}^{\infty} \subseteq \ell_{\infty}$$
, using the metric d_{∞} .

Solution: We claim that A is not closed in ℓ_{∞} (using the metric d_{∞}). Let $(x_n)_{n\geq 1}$ be the sequence in \mathbb{R}^{∞} given by $x_n = \sum_{k=1}^n \frac{1}{k} e_k = \left(\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}, 0, 0, \cdots\right)$. Note that for every $n \in \mathbb{Z}^+$ we have $||x_n||_{\infty} = 1$ so that $x_n \in A$, and so $(x_n)_{n\geq 1}$ is a sequence in A. Also note that $x_n \to a$ in ℓ_{∞} where $a = (a_k)_{k\geq 1} \in \ell_{\infty}$ is given by $a_k = \frac{1}{k}$ for all $k \in \mathbb{Z}^+$, that is $a = \left(\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \cdots\right)$, indeed we have

$$||a-x_n||_{\infty} = ||(0,0,\cdots,0,\frac{1}{n+1},\frac{1}{n+2},\frac{1}{n+3},\cdots)||_{\infty} = \frac{1}{n+1} \longrightarrow 0 \text{ as } n \to \infty.$$

But notice that $a \notin \mathbb{R}^{\infty}$, so $a \notin A$. Since $(x_n)_{\geq 1}$ is a sequence in A with $x_n \to a$ in ℓ_{∞} , but $a \notin A$, it follows (from Theorem 5.16) that A is not closed in ℓ_{∞} . Since ℓ_{∞} is complete and A is not closed in ℓ_{∞} , it follows (from Theorem 6.4) that A is not complete. Since A is not closed in ℓ_{∞} , it follows (from Theorem 6.21) that A is not compact in ℓ_{∞} (and we remark that, by Theorem 6.19, A is not compact in \mathbb{R}^{∞} or in itself).

(b)
$$A = \left\{ x \in \ell_{\infty} \mid ||x||_{2} \le 1 \right\}$$
 in the metric space $(\ell_{\infty}, d_{\infty})$.

Solution: We claim that A is closed in $(\ell_{\infty}, d_{\infty})$, and hence A is complete (since $(\ell_{\infty}, d_{\infty})$ is complete). Let $a \in A^c$. We have $\|a\|_2 > 1$, and so $\sum_{k=1}^{\infty} |a_k|^2 > 1$. Choose $n \in \mathbb{Z}^+$ such that $\sum_{k=1}^n |a_k|^2 > 1$. Let $b = (a_1, \dots, a_n) \in \mathbb{R}^n$ and note that $\|b\|_2 = \left(\sum_{k=1}^n |a_k|^2\right)^{1/2} > 1$. Let $r = \frac{\|b\|_2 - 1}{\sqrt{n}}$. Let $x \in B_{\infty}(a, r)$. Let $y = (x_1, \dots, x_n) \in \mathbb{R}^n$ and note that $\|y - b\|_{\infty} \le \|x - a\|_{\infty} < r$. Recall that for $u \in \mathbb{R}^n$ we have

$$||u||_2 = \left(\sum_{k=1}^n |u_k|^2\right)^{1/2} \le \left(\sum_{k=1}^n ||u||_{\infty}^2\right)^{1/2} = \left(n||u||_{\infty}^2\right)^{1/2} = \sqrt{n} ||u||_{\infty}.$$

Using the (reverse) Triangle Inequality in \mathbb{R}^n , we have

$$\|x\|_2 \geq \|y\|_2 \geq \|b\|_2 - \|y - b\|_2 \geq \|b\|_2 - \sqrt{n} \, \|y - b\|_\infty > \|b\|_2 - \sqrt{n} \, r = 1$$

so that $x \in A^c$. Thus $B_{\infty}(a,r) \subseteq A^c$, so that A is closed in $(\ell_{\infty},d_{\infty})$ (and hence complete), as claimed.

Finally note that A is not compact since, letting e_n denote the n^{th} standard basis vector in \mathbb{R}^{∞} , the sequence $(e_n)_{n\geq 1}$ is a sequence in A with no convergent subsequence (when $n\neq m$ we have $||e_n-e_m||_{\infty}=1$).

3: (a) Let $A = \left\{ f \in \mathcal{C}[0,1] \ \middle| \ |f(x)| \le \frac{1}{x} \text{ for all } x \in (0,1) \right\} \subseteq \mathcal{C}[0,1]$. determine whether A is complete and whether A is compact using the metric d_{∞} .

Solution: We claim that A is closed in $\mathcal{C}[0,1]$ (using the supremum metric d_{∞}). Let $f \in A^c = \mathcal{C}[0,1] \setminus A$. Choose $a \in (0,1)$ such that $|f(a)| > \frac{1}{a}$. Let $r = |f(a)| - \frac{1}{a}$ and note that r > 0. We claim that $B(f,r) \subseteq A^c$. Let $g \in B(f,r)$, that is let $g \in \mathcal{C}[0,1]$ with $||g-f||_{\infty} \le 1$. Since $|f(a)| \le |f(a) - g(a)| + |g(a)|$, we have

$$|f(a)| - |g(a)| \le |f(a) - g(a)| \le ||f - g||_{\infty} < r = |f(a)| - \frac{1}{a}$$

and hence $|g(a)| > \frac{1}{a}$, so that $g \in A^c$. Thus $B(f,r) \subseteq A^c$, showing that A^c is open, hence A is closed, as claimed. Since $\mathcal{C}[0,1]$ is complete and A is closed in $\mathcal{C}[0,1]$, it follows that A is complete.

On the other hand, A is not bounded because given r > 0 we can define $f : [0,1] \to \mathbb{R}$ by f(x) = r for $0 \le x \le \frac{1}{r}$ and $f(x) = \frac{1}{x}$ for $\frac{1}{r} \le x \le 1$ and then we have $f \in A$ with $||f||_{\infty} = r$. Since A is not bounded, it is not compact.

(b) Define $F: \mathcal{C}[0,1] \to \mathcal{C}[0,1]$ by $F(f) = f^2$, that is by $F(f)(x) = f(x)^2$ for all $x \in [0,1]$ (note that F is not linear). Determine whether F is continuous as a map $F: (\mathcal{C}[0,1], d_1) \to (\mathcal{C}[0,1], d_2)$ and whether F is continuous as a map $F: (\mathcal{C}[0,1], d_2) \to (\mathcal{C}[0,1], d_1)$.

Solution: We claim that $F: (\mathcal{C}[0,1],d_1) \to (\mathcal{C}[0,1],d_2)$ is not continuous at 0. We need to show that there exists $\epsilon > 0$ such that for all $\delta > 0$ there exists $f \in \mathcal{C}[0,1]$ such that $||f||_1 < \delta$ but $||f^2||_2 \ge \epsilon$. Take $\epsilon = 1$. For $n \in \mathbb{Z}^+$, let $f_n(x) = n \delta x^n$. Then $||f_n||_1 = \frac{n \delta}{n+1} < \delta$, and $||f_n||_2 = \frac{n \delta}{\sqrt{2n+1}} \to \infty$ so that we can choose $n \in \mathbb{Z}^+$ such that $||f_n||_2 \ge 1 = \epsilon$.

We claim that $F: (\mathcal{C}[0,1], d_2) \to (\mathcal{C}[0,1], d_1)$ is continuous (at every $g \in \mathcal{C}[0,1]$). Let $g \in \mathcal{C}[0,1]$. Let $\epsilon > 0$. Choose $\delta = \min\left\{1, \frac{\epsilon}{2M+1}\right\}$ where $M = \|g\|_2$. Let $f \in \mathcal{C}[0,1]$ with $\|f - g\|_2 < \delta$. Note that since $\|f - g\|_2 < \delta \le 1$ we have $\|f\|_2 \le \|f - g\|_2 + \|g\|_2 < 1 + M$ and so, using the Cauchy-Schwarz Inequality, we have

$$||f^{2} - g^{2}||_{1} = \int_{0}^{1} |f - g| |f + g| = \langle |f - g|, |f + g| \rangle \le ||f - g||_{2} ||f + g||_{2}$$
$$\le ||f - g||_{2} (||f||_{2} + ||g||_{2}) < \frac{\epsilon}{2M+1} ((1+M) + M) = \epsilon.$$

4: (a) Let X be a compact metric space. Let $(A_n)_{n\geq 1}$ be a sequence of nonempty closed subsets of X with $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$. Prove that $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$.

Solution: Suppose, for a contradiction, that $\bigcap_{n=1}^{\infty} A_n = \emptyset$. By taking the complement, we have $\bigcup_{n=1}^{\infty} A_n^c = X$ where $A_n^c = X \setminus A_n$, so that $\{A_n^c \mid n \in \mathbb{Z}^+\}$ is an open cover of X. Since X is compact, we can choose a finite subcover, so we can choose $\ell \in \mathbb{Z}^+$ such that $\bigcup_{n=1}^{\ell} A_n^c = X$. By taking the complement, we have $\bigcap_{n=1}^{\ell} A_n = \emptyset$. This is not possible since $A_1 \supseteq A_2 \supseteq \cdots$ so that $\bigcap_{n=1}^{\ell} A_n = A_{\ell}$, and $A_{\ell} \neq \emptyset$.

(b) Let X be a metric space and let $A, B \subseteq X$. Show that if A is compact, B is closed and $A \cap B = \emptyset$, then there exists r > 0 such that the open sets $U = \bigcup_{a \in A} B(a, r)$ and $V = \bigcup_{b \in B} B(b, r)$ are disjoint.

Solution: Suppose that A is compact, B is closed and $A \cap B = \emptyset$. Since $A \cap B = \emptyset$ we have $A \subseteq B^c$. For each $a \in A$, since $a \in B^c$ and B^c is open, we can choose $d_a > 0$ such that $B(a, 2d_a) \subseteq B^c$. Note that the set $S = \{B(a, d_a) \mid a \in A\}$ is an open cover of A. Since A is compact, we can choose a finite subcover of S, so we can choose $a_1, a_2, \dots, a_n \in A$ such that $A \subseteq B(a_1, d_{a_1}) \cup \dots \cup B(a_n, d_{a_n})$. Let $d = \min\{d_{a_1}, \dots, d_{a_n}\}$.

We claim that $d(a,b) \geq d$ for all $a \in A$ and $b \in B$. Suppose, for a contradiction, that $a \in A$ and $b \in B$ and d(a,b) < d. Since $a \in A \subseteq B(a_1,d_{a_1}) \cup \cdots \cup B(a_n,d_{a_n})$ we can choose k such that $a \in B(a_k,d_{a_k})$. Then we have $d(a,a_k) < d_{a_k}$ and $d(a,b) < d \leq d_{a_k}$ hence $d(b,a_k) \leq d(b,a) + d(a,a_k) < 2d_{a_k}$ so that $b \in B(a_k,2d_{a_k})$. This is not possible since $B(a_k,2d_{a_k}) \subseteq B^c$. Thus $d(a,b) \geq d$ for all $a \in A$ and $b \in B$, as claimed.

Let $r = \frac{d}{2}$, and let $U = \bigcup_{a \in A} B(a, r)$ and $V = \bigcup_{b \in B} B(b, r)$. Then U and V are disjoint because if we had $x \in U \cap V$ then, since $x \in U$ we could choose $a \in A$ such that $x \in B(a, r)$, and since $x \in V$ we could choose $b \in B$ so that $x \in B(b, r)$, but then we would have $d(a, b) \leq d(a, x) + d(x, b) < 2r = d$.