1: (a) Let $A = \{(x,y) \in \mathbb{R}^2 \mid 4x^2 + y^2 < 8x\}$. Prove that A is open in \mathbb{R}^2 .

Solution: We have $A = f^{-1}((-\infty, 0))$ where $f : \mathbb{R}^2 \to \mathbb{R}$ is given by $f(x, y) = 4x^2 + y^2 - 8x$. Since $(-\infty, 0)$ is open and f is continuous, it follows that A is open (by the topological characterization of continuity).

(b) Let $B = \left\{ (a, b, c, d) \in \mathbb{R}^4 \,\middle|\, \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right)^2 = \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right) \right\}$. Prove that B is closed in \mathbb{R}^4 .

Solution: For $a,b,c,d\in\mathbb{R}$ we have $\left(\begin{smallmatrix}a&b\\c&d\end{smallmatrix}\right)^2=\left(\begin{smallmatrix}a^2+bc&ab+bd\\ac+cd&bc+d^2\end{smallmatrix}\right)$ so that

$$(a, b, c, d) \in B \iff (a^2 + bc, ab + bd, ac + cd, bc + d^2) = (1, 0, 0, 1),$$

and hence $B = g^{-1}(p)$ where $g : \mathbb{R}^4 \to \mathbb{R}^4$ is given by $g(a, b, c, d) = (a^2 + bc, ab + bd, ac + cd, bc + d^2)$ and $p = (1, 0, 0, 1) \in \mathbb{R}^4$. The map g is continuous (it is a polynomial map) and $\{p\}$ is closed in \mathbb{R}^4 , and so the set $B = g^{-1}(\{p\})$ is closed in \mathbb{R}^4 (by the topological characterization of continuity).

(c) Let $C = \{(t^2 - 1, t^3 - t) \in \mathbb{R}^2 \mid t \in \mathbb{R}\}$. Determine whether C is closed in \mathbb{R}^2 .

Solution: We claim that $C=h^{-1}(0)$ where $h:\mathbb{R}^2\to\mathbb{R}$ is given by $h(x,y)=x^3+x^2-y^2$. Let $(x,y)\in C$, say $(x,y)=(t^2-1,\,t^3-t)$. Then $x^3+x^2=(t^6-3t^4+3t^2-1)+(t^4-2t^2+1)=t^6-2t^4+t^2=(t^3-t)^2=y^2$ so that h(x,y)=0. This shows that $C\subseteq h^{-1}(0)$. Now let $(x,y)\in h^{-1}(0)$, so we have $y^2=x^3+x^2$. If x=0 then $y^2=x^3+x^2=0$ so that y=0, and in this case we can choose t=1 to get $t^2-1=0=x$ and $t^3-t=0=y$ so that $(x,y)\in C$. If $x\neq 0$ then we can choose $t=\frac{y}{x}$ to get $t^2-1=\frac{y^2}{x^2}-1=\frac{y^2-x^2}{x^2}=\frac{x^3}{x^2}=x$ and $t^3-t=t(t^2-1)=\frac{y}{x}\cdot x=y$ so that again $(x,y)\in C$. This shows that $h^{-1}(0)\subseteq C$, and hence $C=h^{-1}(0)$, as claimed. Since $\{0\}$ is closed and h is continuous, it follows (from the topological characterization of continuity) that C is closed.

- **2:** We consider that $\mathbb{C} = \mathbb{R}^2$ (when $x, y \in \mathbb{R}$, the ordered pair $(x, y) \in \mathbb{R}$ is equal to the complex number $z = x + iy \in \mathbb{C}$), and the usual norm in \mathbb{C} is equal to the usual norm in \mathbb{R}^2 : for z = x + iy = (x, y) we have $||z|| = \sqrt{x^2 + y^2}$. Recall that for $z, w \in \mathbb{C}$ we have ||zw|| = ||z|| ||w||.
 - (a) For $n \ge 1$, let $s_n = \sum_{k=1}^n \left(\frac{1+i}{3}\right)^k$. Prove, from the definition of a limit, that $\lim_{n \to \infty} s_n = \frac{1+3i}{5}$ in \mathbb{C} .

Solution: From the formula for the sum of a geometric series, or by noting that

$$s_n\left(1 - \frac{1+i}{3}\right) = \sum_{k=1}^n \left(\frac{1+i}{3}\right)^k - \sum_{k=2}^{n+1} \left(\frac{1+i}{3}\right)^k = \left(\frac{1+i}{3}\right) - \left(\frac{1+i}{3}\right)^{n+1},$$

we have

$$s_n = \frac{(\frac{1+i}{3}) - (\frac{1+i}{3})^{n+1}}{1 - \frac{1+i}{3}} = \frac{(\frac{1+i}{3})(1 - (\frac{1+i}{3})^n)}{\frac{2-i}{3}} = \frac{(1+i)(2+i)(1 - (\frac{1+i}{3})^n)}{(2-i)(2+i)} = \frac{1+3i}{5} \left(1 - \left(\frac{1+i}{3}\right)^n\right) = \frac{1+3i}{5} - \frac{1+3i}{5} \left(\frac{1+i}{3}\right)^n$$

and hence

$$||s_n - \frac{1+3i}{5}|| = ||\frac{1+3i}{5} \left(\frac{1+i}{3}\right)^n|| = |\frac{1+3i}{5}| ||\frac{1+i}{3}||^n = \frac{\sqrt{10}}{5} \left(\frac{\sqrt{2}}{3}\right)^n.$$

Using the definition of the limit, it follows that $\lim_{n\to\infty} s_n = \frac{1+3i}{5}$: indeed given $\epsilon > 0$, since $\frac{\sqrt{2}}{3} < 1$ we can choose $m \in \mathbb{Z}^+$ so that $\left(\frac{\sqrt{2}}{3}\right)^m < \frac{\epsilon}{\sqrt{10}/5}$, and then when $n \geq m$ we have

$$||s_n - \frac{1+3i}{5}|| = \frac{\sqrt{10}}{5} (\frac{\sqrt{2}}{3})^n \le \frac{\sqrt{10}}{5} (\frac{\sqrt{3}}{2})^m < \epsilon.$$

(b) Define $f: \mathbb{C}\setminus\{0\} \to \mathbb{C}$ by $f(z) = \frac{z^2 - \overline{z}^2}{\|z\|^2}$. Prove, from the definition of a limit, that $\lim_{z\to 0} f(z)$ does not exist.

Solution: Note that $f(x+iy)=\frac{((x^2-y^2)+i\,2xy)-((x^2+y^2)-i\,2xy)}{x^2+y^2}=\frac{i\,4xy}{x^2+y^2}$, and we have f(x+i0)=0 and $f(x,x)=\frac{i\,4x^2}{2x^2}=2i$. We use this to prove, from the definition of the limit, that $\lim_{z\to 0}f(z)$ cannot exist. Suppose, for a contradiction, that $\lim_{z\to 0}f(z)$ does exist, and let $b=\lim_{z\to 0}f(z)$. Taking $\epsilon=1$, we can choose $\delta>0$ such that for all $z\neq 0$, if $0<\|z\|<\delta$ then $\|f(z)-b\|<1$. When $z=\frac{\delta}{2}$ we have $0<\|z\|=\frac{\delta}{2}<\delta$ and we have f(z)=0, and hence |0-b|<1 so that $b\in B(0,1)$. On the other hand, when $z=\frac{\delta}{2}(1+i)$, we have $0<\|z\|=\frac{\delta}{\sqrt{2}}<\delta$ and we have f(z)=2i, and hence |2i-b|<1, so that $b\in B(2i,1)$. This gives the desired contradiction, since $B(0,1)\cap B(2i,1)=\emptyset$ (if we had $b\in B(0,1)$ and $b\in B(2i,1)$ then we would have d(b,0)<1 and d(b,2i)<1 but then, by the Triangle Inequality, we would have $d(0,2i)\leq d(0,b)+d(b,2i)<1+1=2$).

3: (a) Define $f_n:[0,1]\to\mathbb{R}$ by $f_n(x)=1-nx$ for $0\leq x\leq \frac{1}{n}$ and $f_n(x)=0$ for $\frac{1}{n}\leq x\leq 1$. Show that $f_n\to 0$ in $\mathcal{C}[0,1]$ using either of the metrics d_1 or d_2 , but $f_n\to 0$ pointwise on [0,1].

Solution: We have $f_n \to 0$ in $(\mathcal{C}[0,1], d_1)$ and $f_n \to 0$ in $(\mathcal{C}[0,1], d_2)$ by Part 5 of Theorem 5.2 because

$$d_1(f_n,0) = \int_0^1 |f_n(x)| \, dx = \int_0^{1/n} 1 - nx \, dx = \left[x - \frac{n}{2} \, x^2 \right]_0^{1/n} = \frac{1}{2n} \to 0 \text{ , and}$$

$$d_2(f_n,0)^2 = \int_0^1 f_n(x)^2 \, dx = \int_0^{1/n} 1 - 2nx + n^2 x^2 \, dx = \left[x - nx^2 + \frac{n^2}{3} \, x^3 \right]_0^{1/n} = \frac{1}{3n} \to 0.$$

On the other hand, it is not the case that $f_n \to 0$ pointwise on [0,1] because $\lim_{n \to \infty} f_n(1) = \lim_{n \to \infty} 1 = 1$.

(b) Define $f_n: [0,1] \to \mathbb{R}$ by $f_n(x) = n^2x - n^3x^2$ for $0 \le x \le \frac{1}{n}$ and $f_n(x) = 0$ for $\frac{1}{n} \le x \le 1$. Show that $f_n \to 0$ pointwise on [0,1] but $f_n \neq 0$ in $\mathcal{C}[0,1]$ using either of the metrics d_1 or d_2 .

Solution: We claim that $f_n \to 0$ pointwise on [0,1]. When x=0 we have $f_n(x)=f_n(0)=0$ for all $n \in \mathbb{Z}^+$ so that $\lim_{n\to\infty} f_n(x)=0$. Let $x\in (0,1]$. Choose $m\in \mathbb{Z}^+$ large enough so that $\frac{1}{m}< x$. Then for $n\geq m$ we have $\frac{1}{n}\leq \frac{1}{m}< x$. so that $f_n(x)=0$. Since $f_n(x)=0$ for all $n\geq m$, we have $\lim_{n\to\infty} f_n(x)=0$. Thus $f_n\to 0$ pointwise on [0,1], as claimed.

On the other hand, we have $f_n \not\to 0$ in $(\mathcal{C}[0,1], d_1)$ and $f_n \not\to 0$ in $(\mathcal{C}[0,1], d_2)$ by Part 5 of Theorem 5.2 because

$$d_1(f_n,0) = \int_0^1 |f_n(x)| \, dx = \int_0^{1/n} n^2 x - n^3 x^2 \, dx = \left[\frac{n^2}{2} x^2 - \frac{n^3}{3} x^3 \right]_0^{1/n} = \frac{1}{6} \text{, and}$$

$$d_2(f_n,0)^2 = \int_0^1 f_n(x)^2 \, dx = \int_0^{1/n} n^4 x^2 - 2n^5 x^3 + n^6 x^4 \, dx = \left[\frac{n^4}{3} x^3 - \frac{n^5}{2} x^4 + \frac{n^6}{5} x^5 \right]_0^{1/n} = \frac{n}{30} \to \infty.$$

4: (a) For each $n \in \mathbb{Z}^+$, let $x_n = (x_{n,k})_{k \geq 1} \in \mathbb{R}^{\infty}$ be given by $x_n = \sum_{k=1}^n \frac{k+1}{k} e_k$, where e_k is the k^{th} standard basis vector in \mathbb{R}^{∞} (so we have $x_{n,k} = \frac{k+1}{k}$ when $k \leq n$ and $x_{n,k} = 0$ when k > n). Find $\lim_{n \to \infty} \left(\lim_{k \to \infty} x_{n,k} \right)$ in \mathbb{R} , and find $\lim_{k \to \infty} \left(\lim_{n \to \infty} x_{n,k} \right)$ in \mathbb{R} , and determine whether the sequence $(x_n)_{n \geq 1}$ converges in $(\ell_{\infty}, d_{\infty})$.

Solution: Given $n \in \mathbb{Z}^+$, since $x_{n,k} = 0$ for all k > n, we have $\lim_{k \to \infty} x_{n,k} = 0$, and so $\lim_{n \to \infty} \left(\lim_{k \to \infty} x_{n,k}\right) = 0$. Given $k \in \mathbb{Z}^+$, since $x_{n,k} = \frac{k+1}{k}$ for all $n \ge k$, we have $\lim_{n \to \infty} x_{n,k} = \frac{k+1}{k}$, so $\lim_{k \to \infty} \left(\lim_{n \to \infty} x_{n,k}\right) = \lim_{k \to \infty} \frac{k+1}{k} = 1$. We claim that $(x_n)_{n \ge 1}$ does not converge in (ℓ_∞, d_∞) . Suppose, for a contradiction, that $x_n \to a$ in (ℓ_∞, d_∞) . By Theorem 5.6, for all $k \in \mathbb{Z}^+$ we must have $a_k = \lim_{n \to \infty} x_{n,k} = \frac{k+1}{k}$, and so $a = (a_k)_{k \ge 1} = \left(\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \cdots\right)$. For all $n \in \mathbb{Z}^+$ since $x_{n,k} = a_k = \frac{k+1}{k}$ for $k \le n$ and $x_{n,k} = 0$ for k > n, we have $|x_{n,k} - a_k| = 0$ for $k \le n$ and $|x_{n,k} - a_k| = \frac{k+1}{k}$ for k > n, and so $|x_n - a|_\infty = \sup\left\{\frac{k+1}{k} \mid k \ge n+1\right\} = \frac{n+2}{n+1} > 1$. Since $|x_n - a|_\infty > 1$ for all $n \in \mathbb{Z}^+$, it follows that $x_n \not\to a$ in (ℓ_∞, d_∞) , so we have obtained the desired contradiction.

(b) Let $K = \{x = (x_k)_{k \ge 1} \in \ell_{\infty} | \lim_{k \to \infty} x_k = 0\}$. Show that in $(\ell_{\infty}, d_{\infty})$ we have $\overline{\mathbb{R}^{\infty}} = K$.

Solution: Let $a=(a_k)_{k\geq 1}\in K$. For each $n\in\mathbb{Z}^+$, let $x_n=\sum_{k=1}^n a_k e_k=\left(a_1,a_2,\cdots,a_n,0,0,\cdots\right)$ and note that $(x_n)_{n\geq 1}$ is a sequence in \mathbb{R}^∞ . We claim that $x_n\to a$ in ℓ_∞ (using the metric d_∞). Let $\epsilon>0$. Since $a\in K$ so that $\lim_{k\to\infty}a_k=0$, we can choose $m\in\mathbb{Z}^+$ so that for all $k\in\mathbb{Z}^+$, $k\geq m\Longrightarrow |a_k|<\frac{\epsilon}{2}$. Then for $n\in\mathbb{Z}^+$ with $n\geq m$ we have $\|x_n-a\|_\infty=\|a-x_n\|_\infty=\|(0,0,\cdots,0,a_{n+1},a_{n+2},\cdots)\|_\infty=\sup\left\{|a_k|\ |\ k>m\right\}\leq \frac{\epsilon}{2}<\epsilon$. Thus $x_n\to a$ in ℓ_∞ (using d_∞), as claimed. Since $(x_n)_{n\geq 1}$ is a sequence in \mathbb{R}^∞ with $x_n\to a$ in ℓ_∞ , we have $a\in\mathbb{R}^\infty$ (by Part 2 of Theorem 5.16). Since $a\in K$ was arbitrary, we have $K\subset\mathbb{R}^\infty$.

Now let $a=(a_k)_{k\geq 1}\in\overline{\mathbb{R}^\infty}$. We claim that $a_k\to 0$ in \mathbb{R} so that $a\in K$. Let $\epsilon>0$. Since $a\in\overline{\mathbb{R}^\infty}$, by Part 2 of Theorm 4.47, we have $B_\infty(a,\epsilon)\cap\mathbb{R}^\infty\neq\emptyset$, so we can choose $b=(b_k)_{k\geq 1}\in\mathbb{R}^\infty$ with $\|a-b\|_\infty<\epsilon$. Since $\|a-b\|_\infty<\epsilon$, we have $|a_k-b_k|\leq \|a-b\|_\infty<\epsilon$ for all $k\in\mathbb{Z}^+$. Since $b\in\mathbb{R}^\infty$, we can choose $m\in\mathbb{Z}^+$ so that for all $k\in\mathbb{Z}^+$ we have $k\geq m\Longrightarrow b_k=0$. Then for $k\geq m$ we have $|a_k|=|a_k-b_k|<\epsilon$. Thus $a_k\to 0$ in \mathbb{R} , so that $a\in K$, as claimed. Since $a\in\overline{\mathbb{R}^\infty}$ was arbitrary, we have $\overline{\mathbb{R}^\infty}\subseteq K$.