- **1:** (a) Let $A = \{(x,y) \in \mathbb{R}^2 \mid 4x^2 + y^2 < 8x\}$. Prove that A is open in \mathbb{R}^2 .
 - (b) Let $B = \left\{ (a, b, c, d) \in \mathbb{R}^4 \,\middle|\, \begin{pmatrix} a & b \\ c & d \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$. Prove that B is closed in \mathbb{R}^4 .
 - (c) Let $C = \{(t^2 1, t^3 t) \in \mathbb{R}^2 \mid t \in \mathbb{R}\}$. Determine whether C is closed in \mathbb{R}^2 .
- 2: We consider that $\mathbb{C} = \mathbb{R}^2$ (when $x, y \in \mathbb{R}$, the ordered pair $(x, y) \in \mathbb{R}$ is equal to the complex number $z = x + iy \in \mathbb{C}$ and we have $\overline{z} = x iy \in \mathbb{C}$), and the usual norm in \mathbb{C} is equal to the usual norm in \mathbb{R}^2 : for z = x + iy = (x, y) we have $||z|| = \sqrt{x^2 + y^2}$. Recall that for $z, w \in \mathbb{C}$ we have $||z||^2 = z\overline{z}$ and ||zw|| = ||z|| ||w||.
 - (a) For $n \ge 1$, let $s_n = \sum_{k=1}^n \left(\frac{1+i}{3}\right)^k$. Prove, from the definition of a limit, that $\lim_{n \to \infty} s_n = \frac{1+3i}{5}$ in \mathbb{C} .
 - (b) Define $f: \mathbb{C}\setminus\{0\} \to \mathbb{C}$ by $f(z) = \frac{z^2 \overline{z}^2}{\|z\|^2}$. Prove, from the definition of a limit, that $\lim_{z\to 0} f(z)$ does not exist.
- **3:** (a) Define $f_n:[0,1]\subseteq\mathbb{R}\to\mathbb{R}$ by $f_n(x)=1-nx$ for $0\leq x\leq \frac{1}{n}$ and $f_n(x)=0$ for $\frac{1}{n}\leq x\leq 1$. Show that $f_n\to 0$ in $\mathcal{C}[0,1]$ using either of the metrics d_1 or d_2 , but $f_n\not\to 0$ pointwise on [0,1].
 - (b) Define $f_n:[0,1]\subseteq\mathbb{R}\to\mathbb{R}$ by $f_n(x)=n^2x-n^3x^2$ for $0\leq x\leq \frac{1}{n}$ and $f_n(x)=0$ for $\frac{1}{n}\leq x\leq 1$. Show that $f_n\to 0$ pointwise on [0,1] but $f_n\not\to 0$ in $\mathcal{C}[0,1]$ using either of the metrics d_1 or d_2 .
- **4:** (a) For each $n \in \mathbb{Z}^+$, let $x_n = (x_{n,k})_{k \geq 1} \in \mathbb{R}^{\infty}$ be given by $x_n = \sum_{k=1}^n \frac{k+1}{k} e_k$, where e_k is the k^{th} standard basis vector in \mathbb{R}^{∞} (so we have $x_{n,k} = \frac{k+1}{k}$ when $k \leq n$ and $x_{n,k} = 0$ when k > n). Find $\lim_{n \to \infty} \left(\lim_{k \to \infty} x_{n,k} \right)$ in \mathbb{R} , and find $\lim_{k \to \infty} \left(\lim_{n \to \infty} x_{n,k} \right)$ in \mathbb{R} , and determine whether the sequence $(x_n)_{n \geq 1}$ converges in $(\ell_{\infty}, d_{\infty})$.
 - (b) Let $K = \{x = (x_k)_{k \ge 1} \in \ell_\infty | \lim_{k \to \infty} x_k = 0\}$. Show that in (ℓ_∞, d_∞) we have $\overline{\mathbb{R}^\infty} = K$.