1: (a) Let $M_{k \times \ell}(\mathbb{R})$ be the vector space of real $k \times \ell$ matrices. For $A, B \in M_{k \times \ell}(\mathbb{R})$, define $d(A, B) = \operatorname{rank}(A - B)$. Show that d is a metric on $M_{k \times \ell}(\mathbb{R})$.

Solution: It is clear that d is positive definite, that is $d(A,B) \geq 0$ for all $A,B \in M_{k \times \ell}(\mathbb{R})$ with d(A,B) = 0 if and only if A = B, because only the zero matrix has rank zero. It is also clear that d is symmetric, that is d(A,B) = d(B,A), since for any matrix X we have $\operatorname{rank}(X) = \operatorname{rank}(-X)$. We need to verify that d satisfies the triangle inequality. Let $A,B,C \in M_{k \times \ell}(\mathbb{R})$. Let X = A - B,Y = B - C and Z = C - A. Note that X + Y = Z. Let u_1, \dots, u_ℓ be the columns of X, let v_1, \dots, v_ℓ be the columns of Y and let w_1, \dots, w_ℓ be the columns of Z. Since X + Y = Z we have $w_i = u_i + v_i$ for all indices i, and so $\operatorname{Span}\{w_1, \dots, w_\ell\} \subseteq \operatorname{Span}\{u_1, \dots, u_\ell, v_1, \dots, v_\ell\}$. Let $U = \operatorname{Col}(A) = \operatorname{Span}\{u_1, \dots, u_\ell\}$, $V = \operatorname{Col}(B) = \operatorname{Span}\{v_1, \dots, v_\ell\}$ and $W = \operatorname{Col}(Z) = \operatorname{Span}\{w_1, \dots, w_\ell\}$. Since $W = \operatorname{Span}\{w_1, \dots, w_\ell\} \subseteq \operatorname{Span}\{u_1, \dots, u_\ell, v_1, \dots, v_\ell\} = U + V$ we have

 $\operatorname{rank}(Z) = \dim W \leq \dim(U+V) = \dim U + \dim V - \dim(U\cap V) \leq \dim U + \dim V = \operatorname{rank}(X) + \operatorname{rank}(Y),$ and so

$$d(A,C) = \operatorname{rank}(A-C) = \operatorname{rank}(Z) \le \operatorname{rank}(X) + \operatorname{rank}(Y) = \operatorname{rank}(A-B) + \operatorname{rank}(B-C) = d(A,B) + d(B,C).$$

(b) Let d be a metric on a set X. For $x, y \in X$, let $d_0(x, y) = \min \{d(x, y), 1\}$. Show that d_0 is a metric on X which induces the same topology as d.

Solution: It is clear that d_0 is symmetric and positive definite. Let us verify that d_0 satisfies the Triangle Inequality. Let $x,y,z\in X$. If $d(x,y)\geq 1$ then $d_0(x,y)=1$ hence $d_0(x,z)\leq 1\leq d_0(x,y)+d_0(y,z)$. If $d(y,z)\geq 1$ then $d_0(y,z)=1$ hence $d_0(x,z)\leq 1\leq d_0(x,y)+d_0(y,z)$. If d(x,y)<1 and d(y,z)<1 then $d_0(x,y)=d(x,y)$ and $d_0(y,z)=d(y,z)$ hence $d_0(x,z)\leq d(x,z)\leq d(x,y)+d(y,z)=d_0(x,y)+d_0(y,z)$. In all cases, we have $d_0(x,z)\leq d_0(x,y)+d_0(y,z)$, as required, hence d_0 is a metric on X.

We claim that d_0 induces the same topology as d. For $a \in X$ and r > 0, let $B(a,r) = \{x \in X \mid d(x,a) < r\}$ and $B_0(a,r) = \{x \in X \mid d_0(x,a) < r\}$. Let $U \subseteq X$. Suppose that U is open in (X,d_0) . Let $a \in U$. Choose r > 0 so that $B_0(a,r) \subseteq U$. Let $x \in B(a,r)$. Then we have $d_0(x,a) \le d(x,a) < r$ so that $x \in B_0(a,r) \subseteq U$. This shows that $B(a,r) \subseteq U$, hence U open in (X,d). Suppose, conversely, that U is open in (X,d). Let $a \in U$. Choose s > 0 such that $B(a,s) \subseteq U$. Choose r with $0 < r \le 1$ and with $r \le s$. Let $x \in B_0(a,r)$. Since $d_0(x,a) = \min\{d(x,a),1\}$ and $d_0(x,a) < r \le 1$, we must have $d_0(x,a) = d(a,x)$, hence $d(a,x) = d_0(a,x) < r$ so that $x \in B(a,r) \subseteq B(a,s) \subseteq U$. This shows that $B_0(a,r) \subseteq U$, hence U is open in (X,d_0) .

2: (a) Let $A = \{(x,y) \in \mathbb{R}^2 | x > 0, y > 0, xy < 1\}$. Prove, from the definition of an open set, that A is open in \mathbb{R}^2 . Solution: Let $(a,b) \in A$, so we have a > 0, b > 0 and ab < 1. Note that for r > 0, when $(x,y) \in B((a,b),r)$, we have

$$|x-a| = \sqrt{|x-a|^2} \le \sqrt{|x-a|^2 + |y-a|^2} = d((x,y),(a,b)) < r$$

so that a-r < x < a+r, and similarly |y-b| < r so that b-r < y < b+r. Consider the case that $a \le b$. Choose $r = \min \left\{ a, \frac{1-ab}{2a+b} \right\}$. Then when $(x,y) \in B\left((a,b),r\right)$, we have $x > a-r \ge a-a = 0$ and $y > b-r \ge b-b = 0$, and $xy < (a+r)(b+r) = ab+r(a+b+r) \le ab+r(2a+b) \le ab+(1-ab) = 1$, so that $(x,y) \in A$. Thus we have $B\left((a,b),r\right) \subseteq A$. Similarly, in the case that $b \le a$ we choose $r = \min \left\{b, \frac{1-ab}{a+2b}\right\}$ to get $B\left((a,b),r\right) \subseteq A$. Thus A is open.

(b) For each $k \in \{1, 2, \dots, n\}$, let $a_k, b_k \in \mathbb{R}$ with $a_k \leq b_k$, and let $I_k = [a_k, b_k] \subseteq \mathbb{R}$. Let A be the closed bounded rectangle $A = I_1 \times I_2 \times \cdots \times I_n = \{x \in \mathbb{R}^n \mid \text{each } x_k \in I_k\}$. Prove, from the definition of open and closed sets, that A is closed in \mathbb{R}^n .

Solution: We need to show that the set $A^c = \mathbb{R}^n \setminus A$ is open in \mathbb{R}^n , so we must show that for all $p \in A^c$ there exists r > 0 such that $B(p,r) \subseteq A^c$. Let $p \in A^c$. Since $p \in A^c$, we can choose $\ell \in \{1,2,\cdots,n\}$ such that $p_\ell \notin I_\ell = [a_\ell,b_\ell]$. Then either $p_\ell < a_\ell$ or $p_\ell > b_\ell$. Say $p_\ell < a_\ell$ (the case that $p_\ell > b_\ell$ is similar). Let $r = a_\ell - p_\ell$, and note that r > 0. Let $x \in B(p,r) = B_2(p,r)$ so that $||x-p||_2 < r$. Then we have $|x_\ell - p_\ell| = \sqrt{|x_\ell - p_\ell|^2} \le \sqrt{\sum_{k=1}^n |x_k - p_k|^2} = ||x-p||_2 < r$ so that $x_\ell < p_\ell + r = a_\ell$. Since $x_\ell < a_\ell$ so that $x_\ell \notin I_\ell = [a_\ell, b_\ell]$, we have $x \in A^c$. Since $x \in B(p,r)$ was arbitrary, we have $B(p,r) \subseteq A^c$, as required.

3: (a) Let X be a metric space, let $A \subseteq X$ and let $a \in X$. Using the definition of open and closed sets, the definition of the closure \overline{A} , and the fact that open balls in X are open in X, prove that $a \in \overline{A}$ if and only if for every r > 0 we have $B(a, r) \cap A \neq \emptyset$.

Solution: Suppose that $a \in \overline{A}$. Let r > 0. Suppose, for a contradiction, that $B(a, r) \cap A = \emptyset$. Then we have $A \subseteq B(a, r)^c$ where $B(a, r)^c = X \setminus B(a, r)$. Note that (from the definition of a closed set) $B(a, r)^c$ is closed because B(a, r) is open in X. Since $a \in \overline{A}$ and $B(a, r)^c$ is a closed set in X with $A \subseteq B(a, r)^c$, it follows (from the definition of \overline{A}) that $a \in B(a, r)^c$. This gives the desired contradiction, since $a \in B(a, r)$.

Suppose, conversely, that for every r>0 we have $B(a,r)\cap A\neq\emptyset$. Let K be a closed set in X with $A\subseteq K$. Since K is closed in X it follows (from the definition of a closed set) that K^c is open in X. Suppose, for a contradiction, that $a\notin K$. Since $a\in K^c=X\setminus K$, which is open, it follows (from the definition of an open set) that we can choose r>0 such that $B(a,r)\subseteq K^c$. Since $B(a,r)\subseteq K^c$, we have $B(a,r)\cap K=\emptyset$. Since $B(a,r)\cap K=\emptyset$ and $A\subseteq K$, we have $B(a,r)\cap A=\emptyset$. This contradicts our supposition that for all r>0 we have $B(a,r)\cap A\neq\emptyset$. Thus $a\in K$. Since $a\in K$ for every closed set K in X with $A\subseteq K$, it follows (from the definition of \overline{A}) that $a\in \overline{A}$.

(b) Let
$$A = \{(x, \sin \frac{1}{x}) \in \mathbb{R}^2 \mid 0 < x \le \frac{1}{\pi}\}$$
 and $B = \{(0, y) \in \mathbb{R}^2 \mid -1 \le y \le 1\}$. Prove that $\overline{A} = A \cup B$ in \mathbb{R}^2 .

Solution: We claim that $A \cup B \subseteq \overline{A}$. From the definition of \overline{A} we have $A \subseteq \overline{A}$, so it suffices to show that $B \subseteq \overline{A}$. Let $b \in B$, say b = (0, y) with $-1 \le y \le 1$. By Part (a), to show that $b \in \overline{A}$ it suffices to show that for every r > 0 we have $B(b, r) \cap A \ne \emptyset$. Let r > 0. Note that when $x = \frac{2}{(2n+1)\pi}$ with $n \in \mathbb{Z}^+$, we have $\sin \frac{1}{x} = (-1)^n$. Choose $n \in \mathbb{Z}^+$ so that $\frac{2}{(2n+1)\pi} < r$. Let $x_1 = \frac{2}{(2n+3)\pi}$ and $x_2 = \frac{2}{(2n+1)\pi}$. Then $0 < x_1 < x_2 < r$ and one of the two numbers $\sin \frac{1}{x_1}$ and $\sin \frac{1}{x_2}$ is equal to -1 and the other is equal to 1. By the Intermediate Value Theorem, since $\sin \frac{1}{x}$ is continuous for x > 0 and $-1 \le y \le 1$, we can choose x between x_1 and x_2 such that $\sin \frac{1}{x} = y$. Then for $a = (x, y) = (x, \sin \frac{1}{x})$ we have $a \in A$ with $||a - b|| = ||(x, y) - (0, y)|| = x < x_2 = \frac{2}{(2n+1)\pi} < r$ so that $a \in B(b, r) \cap A$. Thus $b \in \overline{A}$, as required.

We claim that $\overline{A} \subseteq A \cup B$. Let $a = (x,y) \in \overline{A}$. Let $R = [0,\frac{1}{\pi}] \times [-1,1] \subseteq \mathbb{R}^2$. Note that R is closed (by Question 2(b)) with $A \subseteq R$ so (from the definition of \overline{A}) we have $\overline{A} \subseteq R$. Since $a = (x,y) \in \overline{A} \subseteq R$ we have $0 \le x \le \frac{1}{\pi}$ and $-1 \le y \le 1$. If x = 0 then we have $(x,y) \in B$. It remains to show that if $0 < x \le \frac{1}{\pi}$ then $(x,y) \in A$. Let $0 < x \le \frac{1}{\pi}$ and $-1 \le y \le 1$ and suppose, for a contradiction, that $(x,y) \notin A$. Then $y \ne \sin \frac{1}{x}$. Let $\epsilon = \frac{1}{2}|y - \sin \frac{1}{x}|$ and note that $\epsilon > 0$. Since $\sin \frac{1}{t}$ is continuous for t > 0, we can choose $\delta > 0$ so that for all t > 0, if $|t - x| < \delta$ then $|\sin \frac{1}{t} - \sin \frac{1}{x}| < \epsilon = \frac{1}{2}|y - \sin \frac{1}{x}|$ so that, by the Triangle Inequality,

$$\left| y - \sin \frac{1}{t} \right| \ge \left| y - \sin \frac{1}{x} \right| - \left| \sin \frac{1}{x} - \sin \frac{1}{t} \right| > \frac{1}{2} \left| y - \sin \frac{1}{x} \right| = \epsilon.$$

Taking $r = \min\{\epsilon, \delta\}$, we have $B((x, y), r) \cap A = \emptyset$: indeed if we had $(t, \sin \frac{1}{t}) \in B((x, y), r)$ then we would have $|t - x| < \delta$ and $|\sin \frac{1}{t} - y| < \epsilon$, which is not possible. Since $B((x, y), r) \cap A = \emptyset$, it follows from Part (a) that $(x, y) \notin \overline{A}$, giving the desired contradiction.

4: (a) Show that in (ℓ_2, d_2) we have $\overline{\mathbb{R}^{\infty}} = \ell_2$ and $(\mathbb{R}^{\infty})^{\circ} = \emptyset$.

Solution: We claim that in (ℓ_2, d_2) we have $\overline{\mathbb{R}^{\infty}} = \ell_2$. Let $a \in \ell_2$. We need to show that $a \in \overline{\mathbb{R}^{\infty}}$. It suffices to show that for all r > 0 we have $B_2(a,r) \cap \mathbb{R}^{\infty} \neq \emptyset$. Let r > 0. Since $a \in \ell_2$ so that $\sum a_k^2$ converges, we can choose $n \in \mathbb{Z}^+$ such that $\sum_{k=n+1}^{\infty} a_k^2 < r^2$. Let $x = \sum_{k=1}^n a_k e_k = (a_1, a_2, \dots, a_n, 0, 0, \dots)$. Then $x \in \mathbb{R}^{\infty}$ and $||a - x||_2 = \left(\sum_{k=n+1}^{\infty} a_k^2\right)^{1/2} < r$ so that $x \in B_2(a,r)$.

We claim that in (ℓ_2, d_2) we have $(\mathbb{R}^{\infty})^{\circ} = \emptyset$. Let $a \in \mathbb{R}^{\infty}$. We need to show that for every r > 0, the ball $B_2(a, r)$ is not contained in \mathbb{R}^{∞} , that is for every r > 0 there exists $x \in B_2(a, r)$ with $x \notin \mathbb{R}^{\infty}$. Let r > 0. Let $u = \sum_{k=1}^{\infty} \frac{1}{2^{k/2}} e_k = \left(\frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{2\sqrt{2}}, \cdots\right)$ and note that $u \notin \mathbb{R}^{\infty}$ and $||u||_2 = \left(\sum_{k=1}^{\infty} \frac{1}{2^k}\right)^{1/2} = 1$. Let $x = a + \frac{r}{2}u$. Then $x \notin \mathbb{R}^{\infty}$ (since if we had $x \in \mathbb{R}^{\infty}$ then we would also have $u = \frac{2}{r}(x - a) \in \mathbb{R}^{\infty}$) and we have $||x - a||_2 = ||\frac{r}{2}u||_2 = \frac{r}{2}$ so that $x \in B_2(a, r)$.

(b) Let $A = \{x = (x_n)_{n \geq 1} \in \mathbb{R}^{\omega} \mid \forall n \in \mathbb{Z}^+ \mid x_n \mid \leq \frac{1}{2^n} \}$. Show that in (ℓ_1, d_1) we have $A^{\circ} = \emptyset$ and $\overline{A} = A$.

Solution: We claim that $A^{\circ} = \emptyset$. Let $a = (a_n)_{n \geq 1} \in A$. We need to show that for every r > 0 the ball $B_1(a,r)$ is not contained in A, that is for every r > 0 there exists $x \in B_1(a,r)$ with $x \notin A$. Let r > 0. Choose $m \in \mathbb{Z}^+$ so that $\frac{1}{2^m} < \frac{r}{2}$. Define $x = (x_n)_{n \geq 1}$ by $x_n = a_n$ when $n \neq m$ and $x_m = \frac{r}{2}$. Then $x \in \ell_1$ since $\sum_{n=1}^{\infty} |x_n| = \sum_{n=1}^{\infty} |a_n| - |a_m| + \frac{r}{2} < \infty$, and $x \notin A$ since $x_m = \frac{r}{2} > \frac{1}{2^m}$, and $x \in B_1(a,r)$ since

$$||x-a||_1 = \sum_{n=1}^{\infty} |x_n - a_n| = \left| \frac{r}{2} - a_m \right| \le \frac{r}{2} + |a_m| \le \frac{r}{2} + \frac{1}{2^m} < \frac{r}{2} + \frac{r}{2} = r$$

To show that $\overline{A} = A$, we must show that A is closed, or equivalently that A^c is open. Let $a = (a_n)_{n \ge 1} \in A^c$. It suffices to show that there exists r > 0 such that $B_1(a,r) \subseteq A^c$. Since $a \notin A$, we can choose $m \in \mathbb{Z}^+$ so that $|a_m| > \frac{1}{2^m}$. Let $r = |a_m| - \frac{1}{2^m}$ and note that r > 0. We claim that $B_1(a,r) \subseteq A^c$. Let $x = (x_n)_{n \ge 1} \in B_1(a,r)$. Then

$$|a_m| - |x_m| \le |a_m - x_m| \le \sum_{n=1}^{\infty} |a_n - x_n| = ||a - x||_1 < r = |a_m| - \frac{1}{2^m}$$
.

It follows that $|x_m| > \frac{1}{2^m}$, and so $x = (x_n)_{n \ge 1} \notin A$, that is $x \in A^c$ as required.