- 1: (a) Let $M_{k \times \ell}(\mathbb{R})$ be the vector space of real $k \times \ell$ matrices. For $A, B \in M_{k \times \ell}(\mathbb{R})$, define $d(A, B) = \operatorname{rank}(A B)$. Show that d is a metric on $M_{k \times \ell}(\mathbb{R})$.
 - (b) Let d be a metric on a set X. For $x, y \in X$, let $d_0(x, y) = \min \{d(x, y), 1\}$. Show that d_0 is a metric on X which induces the same topology as d.
- **2:** (a) Let $A = \{(x,y) \in \mathbb{R}^2 | x > 0, y > 0, xy < 1\}$. Prove, from the definition of an open set, that A is open in \mathbb{R}^2 .
 - (b) For each $k \in \{1, 2, \dots, n\}$, let $a_k, b_k \in \mathbb{R}$ with $a_k \leq b_k$, and let $I_k = [a_k, b_k] \subseteq \mathbb{R}$. Let A be the closed bounded rectangle $A = I_1 \times I_2 \times \dots \times I_n = \{x \in \mathbb{R}^n \mid \text{each } x_k \in I_k\}$. Prove, from the definition of open and closed sets, that A is closed in \mathbb{R}^n .
- **3:** (a) Let X be a metric space, let $A \subseteq X$ and let $a \in X$. Using the definition of open and closed sets, the definition of the closure \overline{A} , and the fact that open balls in X are open in X, prove that $a \in \overline{A}$ if and only if for every r > 0 we have $B(a, r) \cap A \neq \emptyset$.
 - (b) Let $A = \left\{\left(x,\sin\frac{1}{x}\right) \in \mathbb{R}^2 \mid 0 < x \le \frac{1}{\pi}\right\}$ and $B = \left\{\left(0,y\right) \in \mathbb{R}^2 \mid -1 \le y \le 1\right\}$. Prove that $\overline{A} = A \cup B$ in \mathbb{R}^2 .
- **4:** (a) Show that in (ℓ_2, d_2) we have $\overline{\mathbb{R}^{\infty}} = \ell_2$ and $(\mathbb{R}^{\infty})^o = \emptyset$.
 - (b) Let $A = \{x = (x_n)_{n \ge 1} \in \mathbb{R}^{\omega} \mid \forall n \in \mathbb{Z}^+ \mid x_n | \le \frac{1}{2^n} \}$. Show that in (ℓ_1, d_1) we have $A^{\circ} = \emptyset$ and $\overline{A} = A$.