- 1: (a) Let $A \subseteq \mathbb{R}$ be an open interval, let $f: A \subseteq \mathbb{R} \to \mathbb{R}$, let $M \ge 0$, and suppose that f is differentiable in A with $|f'(x)| \le M$ for all $x \in A$. Prove that f is iniformly continuous on A. (Hint: use the Mean Value Theorem).
 - (b) Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \cos(\pi x^2)$. Prove that f is not uniformly continuous on \mathbb{R} .
 - (c) Let $f:[a,b)\to\mathbb{R}$ be uniformly continuous. Prove that f is bounded.
- **2:** (a) Define $f_n:[0,\infty)\to\mathbb{R}$ by $f_n(x)=nxe^{-nx}$. Find the pointwise limit $f(x)=\lim_{n\to\infty}f_n(x)$ and determine whether $f_n\to f$ uniformly on $[0,\infty)$.
 - (b) Define $f_n: [0,\infty) \to \mathbb{R}$ by $f_n(x) = \frac{x}{1+nx^2}$. Find the pointwise limit $f(x) = \lim_{n \to \infty} f_n(x)$ and determine whether $f_n \to f$ uniformly on $[0,\infty)$.
 - (c) Define $f_n:[0,\infty]\to\mathbb{R}$ by $f_n(x)=\frac{x+n}{x+4n}$. Show that (f_n) converges uniformly on [0,r] for every r>0 but that (f_n) does not converge uniformly on $[0,\infty)$.
- **3:** (a) Suppose that $f_n \to f$ uniformly on $A \subseteq \mathbb{R}$ and let $g : \mathbb{R} \to \mathbb{R}$. Suppose that f is bounded and g is continuous. Prove that $g \circ f_n \to g \circ f$ uniformly on A.
 - (b) (The Riemann Zeta Function) Define $\zeta:(1,\infty)\to\mathbb{R}$ by $\zeta(x)=\sum_{n=1}^\infty\frac{1}{n^x}$. Prove that ζ is differentiable on $(1,\infty)$. Hint: use the Weierstrass M-Test, together with convergence tests from first year calculus, to show that for all r>1 the series $\sum\frac{1}{n^x}$ and $\sum\frac{-\ln n}{n^x}$ both converge uniformly on $[r,\infty)$, then apply Theorem 3.16 (Uniform Convergence and Differentiation).