1: Let $a \in \mathbb{R}$. For each of the following statements, provide a simple description of the functions $f : \mathbb{R} \to \mathbb{R}$ for which the statement is true.

(a)
$$\forall \epsilon > 0 \ \forall \delta > 0 \ \forall x \in \mathbb{R} \ (|x - a| \le \delta \Longrightarrow |f(x) - f(a)| \le \epsilon)$$

Solution: We claim that this statement is true if and only if f is constant. Suppose that f is constant. Let $\epsilon > 0$, let $\delta > 0$ and let $x \in \mathbb{R}$. Suppose that $|x - a| \le \delta$. Since f is constant, we have f(x) = f(a) and so $|f(x) - f(a)| = 0 \le \epsilon$.

Conversely, suppose that f is not constant. Since f is not constant, we can choose $x \in \mathbb{R}$ such that $f(x) \neq f(a)$. Since $f(x) \neq f(a)$ we also have $x \neq a$. Choose $\epsilon = \frac{|f(x) - f(a)|}{2}$ and choose $\delta = |x - a|$. Then $|x - a| \leq \delta$ and $|f(x) - f(a)| > \epsilon$. We have shown that $\exists \epsilon > 0 \ \exists \delta > 0 \ \exists x \in \mathbb{R} (|x - a| \leq \delta \ \text{and} \ |f(x) - f(a)| > \epsilon)$, in other words, we have shown that the given statement is false.

(b)
$$\exists \epsilon > 0 \ \forall \delta > 0 \ \forall x \in \mathbb{R} \ (|x - a| \le \delta \Longrightarrow |f(x) - f(a)| \le \epsilon)$$

Solution: A function $f: \mathbb{R} \to \mathbb{R}$ is bounded when there exists $M \geq 0$ such that $|f(x)| \leq M$ for all $x \in \mathbb{R}$. We claim that the given statement is true if and only if f is bounded. Suppose that f is bounded. Choose $M \in \mathbb{R}$ so that $|f(x)| \leq M$ for all $x \in \mathbb{R}$. Choose $\epsilon = 2M$. Let $\delta > 0$ and let $x \in \mathbb{R}$. Suppose that $|x - a| \leq \delta$. Since $|f(x)| \leq M$ and $|f(a)| \leq M$ we have $|f(x) - f(a)| \leq |f(x)| + |f(a)| \leq 2M = \epsilon$.

Conversely, suppose that f is not bounded. This means that for all $M \geq 0$ there exists $x \in \mathbb{R}$ with |f(x)| > M. Let $\epsilon > 0$. Since f is not bounded we can choose $x \in \mathbb{R}$ so that $|f(x)| > |f(a)| + \epsilon$. Note that $|f(x)| = |f(x) - f(a) + f(a)| \leq |f(x) - f(a)| + |f(a)|$ and so we have $|f(x) - f(a)| \geq |f(x)| - |f(a)| > \epsilon$. Note that since $|f(x)| \neq |f(a)|$ we must have $x \neq a$, so we can choose $\delta = |x - a| > 0$ to get $|x - a| \leq \delta$. We have shown that $\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in \mathbb{R}$ ($|x - a| \leq \delta$ and $|f(x) - f(a)| > \epsilon$), in other words, we have shown that the given statement is false.

(c)
$$\forall a \in \mathbb{R} \ \forall x \in \mathbb{R} \ \exists \epsilon > 0 \ \forall \delta > 0 \ (|f(x) - f(a)| \le \epsilon \Longrightarrow |x - a| \le \delta).$$

Solution: We claim that the given statement is true if and only if f is injective. Suppose that f is injective. Let $a \in \mathbb{R}$ and let $x \in \mathbb{R}$. If x = a then we choose $\epsilon = 1$, and then for all $\delta > 0$ we have $|x - a| = 0 \le \delta$ and so the statement " $|f(x) - f(a)| \Longrightarrow |x - a| \le \delta$ " is true. If $x \ne a$ then, since f is injective, we have $f(x) \ne f(a)$ so we can choose $\epsilon = \frac{|f(x) - f(a)|}{2}$ and then for all $\delta > 0$ we have $|f(x) - f(a)| > \epsilon$ and so once again the statement " $|f(x) - f(a)| \Longrightarrow |x - a| \le \delta$ " is true.

Conversely, suppose that f is not injective. Choose $a \in \mathbb{R}$ and $x \in \mathbb{R}$ so that $x \neq a$ and f(x) = f(a). Let $\epsilon > 0$, and choose $\delta = \frac{|x-a|}{2}$. Then we have $|f(x) - f(a)| = 0 \le \epsilon$ and $|x-a| > \delta$. We have shown that $\exists a \in \mathbb{R} \ \exists x \in \mathbb{R} \ \forall \epsilon > 0 \exists \delta > 0 \ (|f(x) - f(a)| \le \epsilon \ \text{and} \ |x-a| > \delta)$, in other words, we have shown that the given statement is false.

2: For a sequence $(x_n)_{n>p}$ in \mathbb{R} and for $a\in\mathbb{R}$, we say that a is a subsequential limit point of $(x_n)_{n>p}$ when

$$\forall \epsilon > 0 \ \forall m \in \mathbb{Z} \ \exists n \in \mathbb{Z}_{\geq p} \ (n \geq m \text{ and } |x_n - a| \leq \epsilon).$$

We denote the set of subsequential limit points of $(x_k)_{n>p}$ by $Slim((x_n)_{n>p})$.

(a) Determine whether, for every sequence $(x_n)_{n\geq p}$ in \mathbb{R} , we have

$$\lim_{n \to \infty} x_n = a \Longrightarrow \operatorname{Slim}((x_n)_{n \ge p}) = \{a\}.$$

Solution: This is TRUE. Let $(x_n)_{n\geq p}$ be a sequence in \mathbb{R} with $x_n\to a$. We claim that $\mathrm{Slim}\big((x_n)_{n\geq p}\big)=\{a\}$. First we show that $\{a\}\subseteq \mathrm{Slim}\big((x_n)_{n\geq p}\big)$. Let $\epsilon>0$ and let $m\in\mathbb{Z}_{\geq p}$. Since $x_n\to a$ we can choose $m_0\in\mathbb{Z}_{\geq p}$ so that $n\geq m_0\Longrightarrow |x_n-a|<\epsilon$. Let $n=\max\{p,m,m_0\}$. Then $n\in\mathbb{Z}_{\geq p}$ with $n\geq m$ and $|x_n-a|\leq\epsilon$. This proves that $a\in\mathrm{Slim}\big((x_n)_{n\geq p}\big)$, so we have $\{a\}\subseteq\mathrm{Slim}\big((x_n)_{n\geq p}\big)$.

Conversely, we must show that $\mathrm{Slim}\big((x_n)_{n\geq p}\big)\subseteq\{a\}$. Let $b\in\mathrm{Sim}\big((x_n)_{n\geq p}\big)$. Suppose, for a contradiction, that $b\neq a$. Since $x_n\to a$, we can choose $m\in\mathbb{Z}_{n\geq p}$ so that for all $n\in\mathbb{Z}_{\geq p}$ we have $n\geq m\Longrightarrow |x_n-a|<\frac{|b-a|}{2}$. Since $b\in\mathrm{Slim}\big((x_n)_{n\geq p}\big)$, we can choose $n\in\mathbb{Z}_{\geq p}$ with $n\geq m$ and $|x_n-b|\leq \frac{|b-a|}{2}$. Then we have

$$|b-a| = |b-x_n + x_n - a| \le |b-x_n| + |x_n - a| < \frac{|b-a|}{2} + \frac{|b-a|}{2} = |b-a|,$$

which is not possible. Thus we must have b=a, and this shows that $\mathrm{Slim}((x_n)_{n\geq p})\subseteq \{a\}$, as required.

(b) Determine whether, for every sequence $(x_n)_{n\geq 1}$ in \mathbb{R} , we have

$$\operatorname{Slim}((x_n)_{n\geq 1}) = \{a\} \Longrightarrow \lim_{n\to\infty} x_n = a.$$

Solution: This statement is FALSE. For example, for the sequence $(x_n)_{n\geq 1}$ given by $x_n=a$ when n is even and $x_n=n$ when n is odd, $\mathrm{Slim}\big((x_n)_{n\geq 1}\big)=\{a\}$ but $\lim_{n\to\infty}x_n\neq a$, indeed the sequence $(x_n)_{n\geq 1}$ diverges.

Here is a proof that $\mathrm{Slim}\big((x_n)_{n\geq 1}\big)=\{a\}$. Given $\epsilon>0$ and given $m\in\mathbb{Z}^+$ we can choose an even number $n\geq \max\{1,m\}$ to get $n\in\mathbb{Z}^+$ with $n\geq m$ and $|x_n-a|=|a-a|=0<\epsilon$. This shows that $a\in\mathrm{Slim}\big((x_n)_{n\geq 1}\big)$ so that $\{a\}\subseteq\mathrm{Slim}\big((x_n)_{n\geq 1}\big)$. Conversely, let $b\in\mathrm{Slim}\big((x_n)_{n\geq 1}\big)$. Suppose, for a contradiction, that $b\neq a$. Let $\epsilon=\frac{|b-a|}{2}$ and let m=|b-a|+|b|. Then for $n\geq m$, if n is even then $|x_n-b|=|a-b|>\epsilon$, and if n is odd then $|x_n-b|=|n-b|\geq n-|b|\geq m-|b|=|b-a|+|b|-|b|=|b-a|>\epsilon$. But this contradicts the fact that $b\in\mathrm{Slim}\big((x_n)_{n\geq 1}\big)$. Thus we must have b=a, and this shows that $\mathrm{Slim}\big((x_n)_{n\geq 1}\big)\subseteq\{a\}$.

Here is a proof that $\lim_{n\to\infty} x_n \neq a$. Suppose, for a contradiction, that $x_n \to a$. Choose $m \in \mathbb{Z}^+$ so that $n \geq m \Longrightarrow |x_n - a| \leq 1$. Then for all $n \geq m$ we have $a - 1 \leq x_n \leq a + 1$. But we can choose an odd number $n \in \mathbb{N}$ with $n \geq \max\{m, a+2\}$ to get $n \geq m$ with $x_n = n > a + 1$, giving the desired contradiction.

(c) Determine whether there exists a sequence $(x_n)_{n\geq 1}$ in \mathbb{R} with $\mathrm{Slim}((x_n)_{n\geq 1})=[0,1]\subseteq \mathbb{R}$.

Solution: This is TRUE. Let $(x_n)_{n\geq 1}$ be the sequence

$$(x_n)_{n>1} = (x_1, x_2, x_3, \cdots) = (\frac{0}{1}, \frac{1}{1}, \frac{0}{2}, \frac{1}{2}, \frac{2}{2}, \frac{0}{3}, \frac{1}{3}, \frac{2}{3}, \frac{3}{3}, \frac{0}{4}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{4}{4}, \frac{0}{5}, \cdots).$$

Note that for each $q \in [0,1] \cap \mathbb{Q}$ there exist infinitely many indices $n \in \mathbb{Z}^+$ for which $x_n = q$: indeed for $\ell \in \mathbb{Z}^+$ and $k \in \{0,1,\cdots,\ell\}$, we have $x_{\ell(\ell+1)/2} = \frac{0}{\ell}$ and $x_{\ell(\ell+1)/2+k} = \frac{k}{\ell}$, and so when $q = \frac{k}{\ell}$, for $n = t\ell(t\ell+1)/2 + tk$ with $t \in \mathbb{Z}^+$ we have $x_n = \frac{tk}{t\ell} = q$). We claim that for this sequence $(x_n)_{n \geq 1}$, we have $\operatorname{Slim}((x_n)_{n \geq 1}) = [0,1]$.

Let $a \in [0,1]$. Let $\epsilon > 0$ and let $m \in \mathbb{Z}^+$. Since \mathbb{Q} is dense in \mathbb{R} , we can choose $q \in \mathbb{Q}$ with $q \in [0,1]$ and $|q-a| < \epsilon$. Since there are infinitely many indices $n \in \mathbb{Z}^+$ for which $x_n = q$, we can choose $n \in \mathbb{Z}^+$ with $n \geq m$ such that $x_n = q$, and then $|x_n - a| = |q - a| < \epsilon$. This proves that $[0,1] \subseteq \text{Slim}((x_n)_{n \geq 1})$.

Let $a \notin [0,1]$. Then either a < 0 or a > 1. In the case that a < 0 we choose $\epsilon = \frac{|a|}{2}$, and then for every $n \in \mathbb{Z}^+$ we have $x_n \ge 0$ so that $|x_n - a| = x_n - a \ge 0 - a = |a| > \epsilon$. In the case that a > 1 we choose $\epsilon = \frac{a-1}{2}$ and then for every $n \in \mathbb{Z}^+$ we have $x_n \le 1$ so that $|x_n - a| = a - x_n \ge a - 1 > \epsilon$. In either case, we have $|x_n - a| > \epsilon$ for every $n \in \mathbb{Z}^+$ so that $a \notin \mathrm{Slim}((x_n)_{n \ge 1})$. This proves that $\mathrm{Slim}((x_n)_{n \ge 1}) \subseteq [0, 1]$.

- **3:** For a function $f: A \subseteq \mathbb{R} \to \mathbb{R}$, we say that f is **increasing** when $f(x) \leq f(y)$ for all $x, y \in A$ with $x \leq y$, we say that f is **strictly increasing** when f(x) < f(y) for all $x, y \in A$ with x < y, we say that f is **decreasing** when $f(x) \geq f(y)$ for all $x, y \in A$ with $x \leq y$, and we say that f is **strictly decreasing** when f(x) > f(y) for all $x, y \in A$ with x < y. Let $a, b, u, v \in \mathbb{R}$ with a < b and u < v, and let $f: (a, b) \subseteq \mathbb{R} \to (u, v) \subseteq \mathbb{R}$.
 - (a) Suppose that f is increasing, and let $(x_n)_{n\geq 1}$ be a sequence in (a,b) with $x_n \to b$. Show that $(f(x_n))_{n\geq 1}$ converges in \mathbb{R} .

Solution: Note that f((a,b)) is nonempty (for any $x \in (a,b)$ we have $f(x) \in f((a,b))$) and f((a,b)) is bounded (since $f((a,b)) \subseteq (u,v)$), and so f((a,b)) has a supremum in \mathbb{R} . Let $w = \sup f((a,b)) = \sup \{f(x) \mid x \in (a,b)\}$. We claim that $f(x_n) \to w$. Let $\epsilon > 0$. By the Approximation Property of the supremum, we can choose $q \in f((a,b))$ with $w - \epsilon < q \le w$. Since $q \in f((a,b))$ we can choose $p \in (a,b)$ with f(p) = w. Since $x_n \to b$ and p < b we can choose $m \in \mathbb{Z}^+$ so that $n \ge m \Longrightarrow |x_n - b| < b - p \Longrightarrow x_n > p$. Let $n \in \mathbb{Z}^+$ with $n \ge m$. Since $f(x_n) \in f(x_n) \le m$, we have $f(x_n) \le f(p) = p > m - \epsilon$, Since $f(x_n) \in f((a,b))$ and $f(x_n) \in f((a,b))$, we also have $f(x_n) \le m$, so that $f(x_n) \le m$. Thus for all $f(x_n) \in f(a,b)$ we have $f(x_n) \to m$, as claimed.

(b) Suppose that f is continuous and injective. Prove that either f is strictly increasing or f is strictly decreasing.

Solution: Suppose that f is not strictly decreasing. Choose $r, s \in (a, b)$ with r < s such that $f(r) \le f(s)$. Note that since $r \ne s$ and f is injective, we have $f(r) \ne f(s)$, so that f(r) < f(s). We must prove that f is strictly increasing.

We claim that for all $x, y, z \in (a, b)$ with x < y < z, either we have f(x) < f(y) < f(z) or we have f(x) > f(y) > f(z). Let $x, y, z \in (a, b)$ with x < y < z. Note that since x, y and z are distinct and f is injective, it follows that f(x), f(y) and f(z) are distinct. Suppose that f(x) < f(z) (the case that f(x) > f(z) is similar). Suppose for a contradiction, that f(y) < f(x). Choose p with f(y) . By the IVT (the Intermediate Value Theorem), since <math>f is continuous, we can choose $t_1 \in (x, y)$ so that $f(t_1) = p$ and we can choose $t_2 \in (y, z)$ with $f(t_2) = p$. But then we have $t_1 \neq t_2$ with $f(t_1) = p = f(t_2)$ which contradicts the fact that f is injective. Thus we do not have f(y) < f(x). A similar argument shows that we do not have f(y) > f(z) and so (since f(x), f(y) and f(z) are distinct) it follows that f(x) < f(y) < f(z), as required. This proves the claim.

By the claim proven above, for $x \in (a,b)$, since f(r) < f(s), if x < r < s then f(x) < f(r) < f(s), if r < x < s then f(r) < f(x) < f(s), and if r < s < x then f(r) < f(s) < f(s). It follows that when $x, y \in (a,b)$, if either $x \in \{r,s\}$ or $y \in \{r,s\}$ then we have f(x) < f(y).

Let $x, y \in (a, b)$ with x < y and $x, y \notin \{r, s\}$. When x < r we can have x < y < r (1), x < r < y < s (2), or x < r < s < y (3), and when r < x < s we can have r < x < y < s (4) or r < x < s < y (5), and when s < x we must have s < x < y (6). We consider all 6 cases. Case 1: when x < y < r, since f(x) < f(r) we must have f(x) < f(y) < f(r). Case 2: when x < r < y < s, we have f(x) < f(r) < f(y). Case 3: when x < r < s < y, we have f(x) < f(r) < f(s) < f(y). Case 4: when r < x < y < s, since f(r) < f(y) we must have f(r) < f(x) < f(y). Case 5: when r < x < s < y, we have f(r) < f(s) < f(y). Case 6: when s < x < y, since f(s) < f(y) we must have f(s) < f(x) < f(y). In all cases we find that f(x) < f(y), and hence f is strictly increasing.

(c) Suppose that f is increasing and surjective. Prove that f is continuous.

Solution: Let $x \in (a, b)$, and let y = f(x). We need to show that f is continuous at x. Let $\epsilon > 0$. Choose $y_1, y_2 \in (u, v)$ such that $f(x) - \epsilon < y_1 < f(x) < y_2 < f(x) + \epsilon$. Since f is surjective, we can choose $x_1, x_2 \in (a, b)$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Since f is increasing and $f(x_1) = y_1 < f(x) < y_2 = f(x_2)$, we must have $x_1 < x < x_2$. Let $\delta = \min\{x - x_1, x_2 - x\}$. Then for all $t \in (a, b)$ we have

$$|t - x| < \delta \Longrightarrow x - \delta < t < x + \delta$$

$$\Longrightarrow x_1 = x - (x - x_1) < t < x + (x_2 - x) = x_2$$

$$\Longrightarrow f(x_1) \le f(t) \le f(x_2) \text{ (since } f \text{ is increasing)}$$

$$\Longrightarrow f(x) - \epsilon < y_1 = f(x_1) \le f(t) \le f(x_2) = y_2 < f(x) + \epsilon$$

$$\Longrightarrow |f(t) - f(x)| < \epsilon$$

(a) Given $a, b \in \mathbb{R}$ with a < b, show that for every $x \in \mathbb{R}$ there is a point of the form (t, f(t)) with $a \le t \le b$ which is nearest to the point (x, 0).

Solution: We introduce some terminology and notation. Given a vector $u = (x, y) \in \mathbb{R}^2$, the the **length** of the vector is given by $||u|| = \sqrt{x^2 + y^2}$. Given two points $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$ in \mathbb{R}^2 , the **distance** between the two points is $d(p_1, p_2) = ||p_2 - p_1|| = ||(x_2 - x_1, y_2 - y_1)|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.

Let $x \in \mathbb{R}$. Define $h: [a,b] \to [0,\infty)$ by $h(t) = d((t,f(t)),(x,0)) = \sqrt{(t-x)^2 + f(t)^2}$. Since f is continuous, so is the function $g(t) = (t-x)^2 + f(t)^2$, and hence so is the function $h(t) = \sqrt{g(t)}$. By the Extreme Value Theorem, the continuous function h attains its minimum value on [a,b], so we can choose $t_0 \in [a,b]$ so that $h(t_0) \le h(t)$ for every $t \in [a,b]$, so the distance $d((t_0,f(t_0),(x,0)))$ is less than or equal to the distance d((t,f(t)),(x,0)) for every $t \in [a,b]$.

(b) Show that for every $x \in \mathbb{R}$ there is a point on the graph of f which is nearest to the point (x,0).

Solution: Let $x \in \mathbb{R}$. Define $h : \mathbb{R} \to \mathbb{R}$ by $h(t) = d((t, f(t)), (x, 0)) = \sqrt{(t-x)^2 + f(t)^2}$. Note that since $h(t) = \sqrt{(t-x)^2 + f(t)^2} \ge \sqrt{(t-x)^2}$ for all $t \in \mathbb{R}$ and $\sqrt{(t-x)^2} \to \infty$ as $t \to \pm \infty$, it follows by the Comparison Theorem that $h(t) \to \infty$ as $t \to \pm \infty$. Choose $m \ge 0$ so that for all $t \in \mathbb{R}$ we have $t \ge m \Longrightarrow h(t) \ge h(0)$ and $t \le -m \Longrightarrow h(t) \ge h(0)$ (we can do this since $h(t) \to \infty$ as $t \to \pm \infty$). By Part (a), we can choose $t_0 \in [-m, m]$ so that $h(t_0) \le h(t)$ for all $t \in [-m, m]$. In particular, we have $h(t_0) \le h(0)$ because $0 \in [-m, m]$. Then $t \le -m \Longrightarrow h(t) \ge h(0) \ge h(t_0)$ and $t \ge m \Longrightarrow h(t) \ge h(0) \ge h(t_0)$ and $t \in [-m, m] \Longrightarrow h(t) \ge h(t_0)$, and so we have $h(t_0) \le h(t)$ for all $t \in \mathbb{R}$.

(c) Define $g: \mathbb{R} \to [0, \infty)$ as follows. Given $x \in \mathbb{R}$, let g(x) be the distance between the point (x, 0) and a nearest point on the graph of f. Show that g is uniformly continuous.

Solution: Note that

$$g(x) = \min \left\{ d((t, f(t)), (x, 0)) \middle| t \in \mathbb{R} \right\}$$

and we know that the minimum exists by Part (b). We claim that g is uniformly continuous. Let $\epsilon > 0$. Choose $\delta = \epsilon$. Let $x \in \mathbb{R}$. Let $y \in \mathbb{R}$. Suppose that $|x - y| < \delta = \epsilon$. Choose $t_0 \in \mathbb{R}$ so that the point $(t_0, f(t_0))$ is a point on the graph which is nearest to (x, 0) so that we have

$$g(x) = d(t_0, f(t_0), (x, 0)) = ||(t_0, f(t_0)) - (x, 0)||$$

and

$$g(y) = \min \left\{ d(t, f(t)), (y, 0) \middle| t \in \mathbb{R} \right\} \le d(t_0, f(t_0)), (y, 0) = \left\| (t_0, f(t_0)) - (y, 0) \right\|$$

$$= \left\| (t_0, f(t_0)) - (x, 0) + (x, 0) - (y_0) \right\|$$

$$\le \left\| (t_0, f(t_0)) - (x, 0) \right\| + \left\| (x, 0) - (y, 0) \right\| \text{ (by the triangle inequality)}$$

$$= g(x) + |x - y| < g(x) + \epsilon.$$

Similarly (by interchanging the roles of x and y) we have $g(x) < g(y) + \epsilon$ so that $|g(y) - g(x)| < \epsilon$.