1: (a) Let $A = \left\{ \frac{2 + (-1)^n}{n} \middle| n \in \mathbb{Z}^+ \right\}$. Find (with proof) $\sup A$ and $\inf A$ and determine whether A has a maximum and whether A has a minimum.

Solution: Let $a_n = \frac{2+(-1)^n}{n}$ so that $S = \{a_n | n \in \mathbb{Z}^+\}$. We claim that $\sup S = \frac{3}{2}$. Since $\frac{3}{2} = a_2 \in S$ we must have $\sup S \geq \frac{3}{2}$. Also note that $\frac{3}{2}$ is an upper bound for S because $a_1 = 1 < \frac{3}{2}$ and $a_2 = \frac{3}{2}$ and for $n \geq 2$ we have $a_n = \frac{2+(-1)^n}{n} \leq \frac{3}{n} \leq \frac{3}{3} = 1 < \frac{3}{2}$. Since $\frac{3}{2}$ is an upper bound for S we must have $\sup S \leq \frac{3}{2}$. Thus $S = \frac{3}{2}$, as claimed. Note that since $\frac{3}{2} = a_2 \in S$, this is the maximum value of S.

We claim that $\inf S = 0$. Note that 0 is a lower bound for S because for all $n \ge 1$ we have $a_n = \frac{2+(-1)^n}{n} \ge \frac{1}{n} > 0$. Since 0 is a lower bound for S we have $\inf S \ge 0$. Suppose, for a contradiction, that S > 0, say $\inf S = m > 0$. Choose $n \in \mathbb{Z}^+$ with $n > \frac{3}{m}$ and note that we have $\frac{3}{n} < m$. Then $a_n = \frac{2+(-1)^n}{n} \le \frac{3}{n} < m$, which contradicts the fact that m is a lower bound for S. Thus $\inf S = 0$, as claimed. Since $a_n > 0$ for all n, we have $0 \notin S$, and hence S does not have a minimum.

(b) For $F \subseteq \mathbb{R}$, we say that F is **dense** in \mathbb{R} when for every $a, b \in \mathbb{R}$ with a < b there exists $x \in F$ with a < x < b, and we say that F has the **supremum property** when for every nonempty set $A \subseteq F$, if A has an upper bound $c \in F$ then A has an upper bound $b \in F$ with $b \le c$ for every upper bound $c \in F$ for A. Prove that there is no proper subset of \mathbb{R} which is dense in \mathbb{R} and has the supremum property.

Solution: Let F be a proper subset of $\mathbb R$ which is dense in $\mathbb R$. Suppose, for a contradiction, that F has the supremum property. Choose $r \in \mathbb R$ with $r \notin F$. Let $A = \{x \in F \mid x < r\}$. Note that A is non-empty because, since F is dense in $\mathbb R$, we can choose $a \in F$ with r-1 < a < r, and this value of x is in A. Also note that A is bounded above in F because, since F is dense in $\mathbb R$, we can choose $c \in F$ with $c \in F$ with $c \in F$ is an upper bound for $c \in F$ is an upper bound for $c \in F$ and since we are assuming that $c \in F$ has the supremum property, we can choose an upper bound $c \in F$ for $c \in F$ with $c \in F$ for $c \in F$ for $c \in F$ with $c \in F$ for $c \in F$

We claim that since b is an upper bound for A, it follows that $b \ge r$. Suppose, for a contradiction, that b < r. Since F is dense in $\mathbb R$ we can choose $x \in F$ with b < x < r. Since $x \in F$ with x < r, we have $x \in A$. But then we have $x \in A$ with x > b which contradicts the fact that b is an upper bound for A. Thus $b \ge r$, as claimed.

We claim that since $b \in F$ with $b \le c$ for every upper bound $c \in F$ for A, it follows that b < r. Suppose, for a contradiction, that $r \le b$. Since $b \in F$ and $r \notin F$ so that $r \ne b$, we have r < b. Since F is dense in $\mathbb R$ we can choose $c \in F$ with r < c < b. Since r < c, we have x < r < c for every $x \in A$, and hence $c \in F$ is an upper bound for A. This contradicts the fact that $b \le c$ for every upper bound $c \in F$ for A. Thus b < r, as claimed.

Thus $b \ge r$ and b < r, which gives the desired contradiction, so F does not have the supremum property.

- **2:** Let $(x_n)_{n\geq p}$ and $(y_n)_{n\geq p}$ be sequences in \mathbb{R} and let $a\in\mathbb{R}$.
 - (a) Use definitions of limits to prove that if $\lim_{n\to\infty} x_n = a$ with a>0 and $\lim_{n\to\infty} y_n = \infty$ then $\lim_{n\to\infty} \frac{y_n}{x_n} = \infty$. Solution: Suppose that $\lim_{n\to\infty} x_n = a$ with a>0 and $\lim_{n\to\infty} y_n = \infty$. Since $x_n\to a>0$ we can choose $m_1\in\mathbb{Z}_{\geq p}$ so that $n\geq m_1\Longrightarrow |x_n-a|\leq \frac{a}{2}\Longrightarrow \frac{a}{2}\leq x_n\leq \frac{3a}{2}$. In particular, we remark that when $n\geq m_1$, we have $x_n>0$ so that $\frac{y_n}{x_n}$ is defined. Let $r\in\mathbb{R}$. Since $y_n\to\infty$, we can choose $m_2\in\mathbb{Z}_{\geq p}$ so that $n\geq m_2\Longrightarrow y_n\geq \frac{3a|r|}{2}$. Let $m=\max\{m_1,m_2\}$. Then for $n\geq m$ we have $x_n\leq \frac{3a}{2}$ and we have $y_n\geq \frac{3a|r|}{2}$, and so $\frac{y_n}{x_n}\geq \frac{3a|r|/2}{3a/2}=|r|\geq r$. Thus $\frac{y_n}{x_n}\to\infty$
 - (b) Prove that for every sequence $(x_n)_{n\geq 1}$ of real numbers, if $|x_{n+1}-x_n|\leq \frac{1}{2^n}$ for all $n\in\mathbb{Z}^+$ then $(x_n)_{n\geq 1}$ converges.

Solution: Let $(x_n)_{n\geq 1}$ be a sequence of real numbers. Suppose that $|x_{n+1}-x_n|\leq \frac{1}{2^n}$ for all $n\in\mathbb{Z}^+$. We shall show that $(x_n)_{n\geq 1}$ is Cauchy. Let $\epsilon>0$. Choose $m\in\mathbb{Z}^+$ large enough so that $\frac{1}{2^{m-1}}<\epsilon$ (equivalently, choose $m\in\mathbb{Z}^+$ with $m>1+\ln(1/\epsilon)/\ln 2$). Let $k,\ell\geq m$. If $k=\ell$ then $|a_k-a_\ell|=0<\epsilon$. Suppose that $k\neq \ell$, say $k<\ell$ (the case $\ell< k$ is similar). Then

$$|a_k - a_\ell| = |a_\ell - a_k| = |a_\ell - a_{\ell-1} + a_{\ell-1} - a_{\ell-2} + a_{\ell-2} - \dots - a_{k+1} - a_{k+1} - a_k|$$

$$\leq |a_\ell - a_{\ell-1}| + |a_{\ell-1} + a_{\ell-2}| + \dots + |a_{k+1} - a_k|$$

$$\leq \frac{1}{2^{\ell-1}} + \frac{1}{2^{\ell-2}} + \dots + \frac{1}{2^{k+1}} + \frac{1}{2^k} = 2\left(\frac{1}{2^k} - \frac{1}{2^\ell}\right) < \frac{1}{2^{k-1}} \leq \frac{1}{2^{m-1}} < \epsilon.$$

Thus $(a_n)_{n\geq 1}$ is Cauchy, as claimed, and so it converges by the Cauchy Criterion for Convergence.

3: (a) Use the definition of the limit to prove that $\lim_{x\to -1} \frac{x+1}{x^2-1} = -\frac{1}{2}$.

Solution: Note that for $x \neq \pm 1$ we have

$$\left|\frac{x+1}{x^2-1}+\frac{1}{2}\right|=\left|\frac{x+1}{(x-1)(x+1)}+\frac{1}{2}\right|=\left|\frac{1}{x-1}+\frac{1}{2}\right|=\left|\frac{2+(x-1)}{2(x-1)}\right|=\frac{|x+1|}{2|x-1|}\,.$$

Also note that

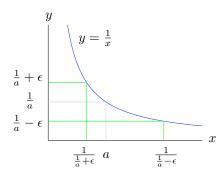
$$|x+1|<1 \Longrightarrow -2 < x < 0 \Longrightarrow -3 < x-1 < -1 \Longrightarrow 1 < |x-1| < 3 \Longrightarrow \tfrac{1}{3} < \tfrac{1}{|x-1|} < 1 \,.$$

Given $\epsilon > 0$ we choose $\delta = \min(1, 2\epsilon)$ and then we have

$$\begin{split} 0 < |x+1| < \delta &\Longrightarrow \left(x \neq \pm 1 \text{ and } |x+1| < 1 \text{ and } |x+1| < 2\epsilon \right) \\ &\Longrightarrow \left(x \neq \pm 1 \text{ and } \frac{1}{|x-1|} < 1 \text{ and } |x+1| < 2\epsilon \right) \\ &\Longrightarrow \left| \frac{x+1}{x^2-1} + \frac{1}{2} \right| = \frac{|x+1|}{2|x-1|} < \frac{2\epsilon}{2\cdot 1} = \epsilon \;. \end{split}$$

(b) Let a>0 and let $0<\epsilon<\frac{1}{a}$. Find (with proof) the largest value of $\delta>0$ with the property that for all x with $0<|x-a|<\delta$ we have $\left|\frac{1}{x}-\frac{1}{a}\right|<\epsilon$.

Solution: Careful consideration of the following graph



leads us to guess that the largest such value δ is $\delta = a - \frac{1}{\frac{1}{a} + \epsilon}$. To verify this algebraically, we first show that $a - \frac{1}{\frac{1}{a} + \epsilon} < \frac{1}{\frac{1}{a} - \epsilon} - a$ (as the graph suggests). Note that $a - \frac{1}{\frac{1}{a} + \epsilon} = a - \frac{a}{1 + a\epsilon} = \frac{a + a^2 \epsilon - a}{1 + a\epsilon} = \frac{a^2 \epsilon}{1 + a\epsilon}$ and similarly $\frac{1}{\frac{1}{a} - \epsilon} - a = \frac{a^2 \epsilon}{1 - a\epsilon}$. Since a and ϵ are positive we have

$$-a\epsilon < a\epsilon \Longrightarrow 1 - a\epsilon < 1 + a\epsilon \Longrightarrow \tfrac{1}{1 + a\epsilon} < \tfrac{1}{1 - a\epsilon} \Longrightarrow \tfrac{a^2\epsilon}{1 + a\epsilon} < \tfrac{a^2\epsilon}{1 - a\epsilon} \Longrightarrow a - \tfrac{1}{\frac{1}{a} + \epsilon} < \tfrac{1}{\frac{1}{a} - \epsilon} - a \,,$$

as claimed. It follows that when $\delta = a - \frac{1}{\frac{1}{a} + \epsilon}$ we have

$$\begin{split} |x-a| < \delta &\Longrightarrow a - \delta < x < a + \delta \Longrightarrow a - \left(a - \frac{1}{\frac{1}{a} + \epsilon}\right) < x < a + \left(\frac{1}{\frac{1}{a} - \epsilon} - a\right) \\ &\Longrightarrow \frac{1}{\frac{1}{a} + \epsilon} < x < \frac{1}{\frac{1}{a} - \epsilon} \Longrightarrow \frac{1}{a} - \epsilon < \frac{1}{x} < \frac{1}{a} + \epsilon \Longrightarrow \left|\frac{1}{x} - \frac{1}{a}\right| < \epsilon \,. \end{split}$$

On the other hand, when $\delta > a - \frac{1}{\frac{1}{a} + \epsilon}$ we can choose x with $a - \delta < x < \frac{1}{\frac{1}{a} + \epsilon} = \frac{a}{1 + a\epsilon}$ but then we have $a - \delta < x < a$ so that $0 < |x - a| < \delta$, and we also have $\frac{1}{x} > \frac{1}{a} + \epsilon$ so that $\left| \frac{1}{x} - \frac{1}{a} \right| > \epsilon$.

4: For any sets A and B, the **set difference** of A and B is the set $A \setminus B = \{x \in A \mid x \notin B\}$.

For any non-empty sets X and Y, we say that f is a **function** from X to Y, and we write $f: X \to Y$, when for every $x \in X$ there exists a unique corresponding element $f(x) \in Y$. The set X is called the **domain** of f and the set $f(X) = \{f(x) \mid x \in X\}$ is called the **range** of f.

Let X and Y be nonempty sets and let $f: X \to Y$. When $A \subseteq X$, the **image** of A under f is the set $f(A) = \{f(x) \mid x \in A\}$. When $C \subseteq Y$, the **inverse image** of C under f is the set $f^{-1}(C) = \{x \in X \mid f(x) \in C\}$. We say that f is **injective** (or **one-to-one**, written as 1:1) when f has the property that for all $x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

Prove that the following are equivalent.

- (1) f is injective.
- (2) $f(A \cap B) = f(A) \cap f(B)$ for all subsets $A, B \subseteq X$.
- (3) $f(A \setminus B) = f(A) \setminus f(B)$ for all subsets $A, B \subseteq X$.
- (4) $f^{-1}(f(A)) = A$ for all subsets $A \subseteq X$.

Solution: First we show that $(1) \iff (2)$. Suppose that f is injective. Let $A, B \subseteq X$. Let $y \in f(A \cap B)$. Choose $x \in A \cap B$ with f(x) = y. Since $x \in A$ and y = f(x) we have $y \in f(A)$. Since $x \in B$ and y = f(x) we have $y \in f(B)$. Thus $y \in f(A) \cap f(B)$. This proves that $f(A \cap B) \subseteq f(A) \cap f(B)$ (we did not use the fact that f was injective). Now let $y \in f(A) \cap f(B)$. Since $y \in f(A)$ we can choose $x_1 \in A$ with $f(x_1) = y$. Since $y \in f(B)$ we can choose $x_2 \in B$ with $f(x_2) = y$. Since $f(x_1) = y = f(x_2)$ and f is injective, we must have $x_1 = x_2$, say $x_1 = x_2 = x$. Since $x = x_1 \in A$ and $x = x_2 \in B$ we have $x \in A \cap B$. Since $x \in A \cap B$ and $y = f(x_1) = f(x_2) = f(x)$ we have $y \in f(A \cap B)$. This shows that $f(A) \cap f(B) \subseteq f(A \cap B)$, and completes the proof that $f(A) \cap f(B) = f(A) \cap f(A) = f(A) \cap f(A) \cap f(B) = f(A) \cap f(A) = f(A) \cap f(A) = f(A) \cap f(A) = f(A) \cap f(A)$

Next we show that $(1) \iff (3)$. Suppose that f is injective. Let $A, B \subseteq X$. Let $y \in f(A \setminus B)$. Choose $x_1 \in A \setminus B$ with $f(x_1) = y$. Since $x_1 \in A$ and $f(x_1) = y$ we have $y \in f(A)$. Suppose, for a contradiction, that $y \in f(B)$. Choose $x_2 \in B$ with $f(x_2) = y$. Since $f(x_1) = y = f(x_2)$ and f is injective, we must have $x_1 = x_2$. This is not possible since $x_1 \notin B$ and $x_2 \in B$. Thus we must have $y \notin f(B)$. Since $y \in f(A) \setminus f(B)$. This proves that $f(A \setminus B) \subseteq f(A) \setminus f(B)$. Now let $y \in f(A) \setminus f(B)$. Since $y \in f(A)$ we can choose $x \in A$ so that f(x) = y. Since $y \notin f(B)$ and y = f(x), we cannot have $x \in B$. Since $x \in A$ and $x \notin B$ we have $x \in A \setminus B$. Since $x \in A \setminus B$ and y = f(x) we have $y \in f(A \setminus B)$. This shows that $f(A) \setminus f(B) \subseteq f(A \setminus B)$ and completes the proof that $f(A) \cap f(B) \subseteq f(A \setminus B)$ and completes the proof that $f(A) \cap f(B) \subseteq f(A \setminus B)$. Let $f(A) \cap f(B) \subseteq f(A \setminus B)$ and $f(A) \cap f(B) \subseteq f(A \setminus B)$ so that $f(A) \cap f(B) = \emptyset$. Thus $f(A) \cap f(B) = \emptyset$.

Finally, we show that $(1) \iff (4)$. Suppose that f is injective. Let $A \subseteq X$. Let $x_1 \in f^{-1}(f(A))$. This means that we have $f(x_1) \in f(A)$. Since $f(x_1) \in f(A)$, we can choose $x_2 \in A$ so that $f(x_1) = f(x_2)$. Since $f(x_1) = f(x_2)$ and f is injective, we must have $x_1 = x_2$. Thus $x_1 = x_2 \in A$. This proves that $f^{-1}(f(A)) \subseteq A$. Now let $x \in A$, and let y = f(x). Since y = f(x) with $x \in A$, we have $y \in f(A)$. Since f(x) = y with $y \in f(A)$, we have $x \in f^{-1}(f(A))$. This proves that $A \subseteq f^{-1}(f(A))$, and completes the proof that $f(x_1) = f(x_2)$ and let $f(x_1) = f(x_2)$. Let $f(x_2) = f(x_2)$. Let $f(x_2) = f(x_2) = f(x_2)$. Then $f(x_2) = f(x_2) = f(x_2) = f(x_2) = f(x_2)$. Since $f(x_2) = f(x_2) = f(x_2) = f(x_2)$. Since $f(x_2) = f(x_2) = f(x_2) = f(x_2)$. Since $f(x_2) = f(x_2) = f(x_2) = f(x_2)$. Since $f(x_2) = f(x_2) = f(x_2) = f(x_2)$. Since $f(x_2) = f(x_2) = f(x_2) = f(x_2)$. Since $f(x_2) = f(x_2) = f(x_2) = f(x_2)$. Since $f(x_2) = f(x_2) = f(x_2) = f(x_2)$. Since $f(x_2) = f(x_2)$.