- 1: (a) Let $A = \left\{ \frac{2 + (-1)^n}{n} \middle| n \in \mathbb{Z}^+ \right\}$. Find (with proof) $\sup A$ and $\inf A$ and determine whether A has a maximum and whether A has a minimum.
 - (b) For $F \subseteq \mathbb{R}$, we say that F is **dense** in \mathbb{R} when for every $a, b \in \mathbb{R}$ with a < b there exists $x \in F$ with a < x < b, and we say that F has the **supremum property** when for every nonempty set $A \subseteq F$, if A has an upper bound $c \in F$ then A has an upper bound $b \in F$ with $b \le c$ for every upper bound $c \in F$ for A. Prove that there is no proper subset of \mathbb{R} which is dense in \mathbb{R} and has the supremum property.
- **2:** Let $(x_n)_{n\geq p}$ and $(y_n)_{n\geq p}$ be sequences in \mathbb{R} and let $a\in\mathbb{R}$.
 - (a) Use definitions of limits to prove that if $\lim_{n\to\infty} x_n = a$ with a > 0 and $\lim_{n\to\infty} y_n = \infty$ then $\lim_{n\to\infty} \frac{y_n}{x_n} = \infty$.
 - (b) Prove that for every sequence $(x_n)_{n\geq 1}$ of real numbers, if $|x_{n+1}-x_n|\leq \frac{1}{2^n}$ for all $n\in\mathbb{Z}^+$ then $(x_n)_{n\geq 1}$ converges.
- **3:** (a) Use the definition of the limit to prove that $\lim_{x\to -1} \frac{x+1}{x^2-1} = -\frac{1}{2}$.
 - (b) Let a > 0 and let $0 < \epsilon < \frac{1}{a}$. Find (with proof) the *largest* value of $\delta > 0$ with the property that for all x with $0 < |x a| < \delta$ we have $\left| \frac{1}{x} \frac{1}{a} \right| < \epsilon$.
- **4:** For any sets A and B, the **set difference** of A and B is the set $A \setminus B = \{x \in A \mid x \notin B\}$.

For any non-empty sets X and Y, we say that f is a **function** from X to Y, and we write $f: X \to Y$, when for every $x \in X$ there exists a unique corresponding element $f(x) \in Y$. The set X is called the **domain** of f and the set $f(X) = \{f(x) \mid x \in X\}$ is called the **range** of f.

Let X and Y be nonempty sets and let $f: X \to Y$. When $A \subseteq X$, the **image** of A under f is the set $f(A) = \{f(x) \mid x \in A\}$. When $C \subseteq Y$, the **inverse image** of C under f is the set $f^{-1}(C) = \{x \in X \mid f(x) \in C\}$. We say that f is **injective** (or **one-to-one**, written as 1:1) when f has the property that for all $x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

Prove that the following are equivalent.

- (1) f is injective.
- (2) $f(A \cap B) = f(A) \cap f(B)$ for all subsets $A, B \subseteq X$.
- (3) $f(A \setminus B) = f(A) \setminus f(B)$ for all subsets $A, B \subseteq X$.
- (4) $f^{-1}(f(A)) = A$ for all subsets $A \subseteq X$.