
SYDE 311 Advanced Engineering Math 2, Solutions to the Exam, Spring 2024

[10] 1: (a) For the pair of ODEs

(
x′

y′

)
=

(
x2 + y − 1

2y − xy

)
, find all the equilibrium points.

Solution: A point (x, y) is an equilibrium point when y = 1− x2 (1) and y(2− x) = 0 (2). From (2) we find
that y = 0 or x = 2. When y = 0, equation (1) gives x2 = 1 so that x = ±1, and when x = 2 equation (1)
gives y = 1− 22 = −3. Thus the equilibrium points are (x, y) = (±1, 0), (2,−3).

(b) For

(
x′

y′

)
=

(
xy + x
y2 − x

)
, determine whether

(
1
−1

)
is attracting or repelling.

Solution: Let F (x, y) =

(
xy + x
y2 − x

)
. Then DF (x, y) =

(
y+1 x
−1 2y

)
. Let A = DF (1,−1) =

(
0 1
−1 −2

)
. The

characteristic polynomial is g(r) = r2 + 2r+ 1 = (r+ 1)2. The only eigenvalue is r = −1, which is negative,
so the equilibrium point (1,−1) is attracting.

(c) For

(
x′

y′

)
=

(
xy2

yx− y

)
, find a conserved quantity H(x, y).

Solution: We need to solve the DE dy
dx = y′

x′ = yx−y
xy2 = x−1

xy . The DE is separable, so we write it as

y dy = x−1
x dx and integrate both sides to get 1

2y
2 =

∫
1− 1

x dx = x− lnx+ c. Thus H(x, y) = 1
2y

2− x+ lnx
is a conserved quantity.



[10] 2: (a) Find the 4th Taylor polynomial at 0 for the solution to the IVP y′+xy = 1+x2 with y(0) = 2.

Solution: Let y = c0 + c1x+ c2x
2 + c3x

3 + · · · and y′ = c1 + 2c2x+ 3c3x
2 + · · ·. Put this in the DE to get(

c1 + 2c2x+ 3c3c
2 + 4c4x

3 + · · ·
)

+
(
c0x+ c1x

2 + c2x
3 + · · ·

)
= 1 + x.

To get y(0) = 2 we need c0 = 2, and then we equate coefficients of xn in the above equation: By equating
coefficients of x0 we get c1 = 1. From the coefficients of x1 we get 2c2 + c0 = 0 so that c2 = − 1

2c0 = − 1
2 · 2 =

−1. From x2 we get 3c3 + c1 = 1 so that c3 = 1
3 (1− c1) = 1

3 (1− 1) = 0. From x3 we get 4c4 + c2 = 0 so that
c4 = − 1

4c2 = − 1
4 (−1) = 1

4 . Thus the 4th Taylor polynomial is

y = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 = 2 + x− 1

2x
2 + 1

4x
4.

(b) Consider the ODE x2y′′ − x2y′ + (x−2) y = 0. Following Frobenius’ method, find two values of r such
that the DE has a solution of the form y =

∑∞
n=0 cnx

n+r, then find an exact, closed form formula for a
solution with r = −1 and c0 = 1.

Solution: Let y =
∑
n≥0

cnx
n+r, y′ =

∑
n≥0

(n+ r)cnx
n+r−1 and y′′ =

∑
n≥0

(n+ r)(n+ r− 1)cnx
n+r−2. Put these

in the DE to get

0 =
∑
n≥0

(n+ r)(n+ r − 1)cnx
n+r −

∑
n≥0

(n+ r)cnx
n+r+1 +

∑
n≥0

cnx
n+r+1 −

∑
n≥0

2cnx
n+r

= xr
( ∑
m≥0

(m+ r)(m+ r − 1)cmx
m −

∑
m≥1

(m+ r − 1)cm−1x
m +

∑
m≥1

cm−1x
m −

∑
m≥

2cmx
m
)

0 =
∑
m≥0

((m+ r)(m+ r − 1)− 2)cmx
m −

∑
m≥1

(m+ r − 2)cm−1x
m

When m = 0, if c0 6= 0 then equationg the coefficient of x0 gives r(r − 1)− 2 = 0, that is r2 − r − 2 = 0, so
that (r − 2)(r + 1) = 0. To get a non-zero solution we need r = 2 or r = −1.

When r=−1 and c0 =1, equating the coefficient of xm, m≥1 gives ((m−1)(m−2)−2)cm−(m−3)cm−1 =0
so that

cm = m−3
(m−1)(m−2)−2cm−1 = m−3

m2−3mcm−1 = 1
mcm−1.

Thus cn = 1
n! for all n ≥ 0, and the solution is y = x−1

∑
n≥0

1
n! x

n = 1
x e

x.



[10] 3: (a) Find the Fourier series for the 2π-periodic function f with f(x)= |x| for −π≤x≤π.

Solution: Since f is even we have bn = 0 for all n ≥ 0 and we have

a0 = 1
π

∫ π

0

x dx = 1
π

[
1
2x

2
]π
0

= π
2

an = 2
π

∫ π

0

x cosnx dx = 2
π

([
1
nx sinnx

]π
0
−
∫ π

0

1
n sinnx dx

)
= 2

π

(
0 +

[
1
n2 cosnx

]π
0

)
= 2

πn2 ((−1)n − 1) =

{
0 , if n is even

− 4
πn2 , if n id odd

}
.

Thus the Fourier series of f is given by f(x) = π
2 −

∑
n odd

4
πn2 cosnx.

(b) Let f be the 2π-periodic function with f(x) = −1 for −π ≤ x < 0 and f(x) = 1 for 0 ≤ x < π. The
Fourier series of f is given by

∑
n odd

4
πn sinnx. By evaluating at x = π

2 , and by using Parceval’s identity, find

R=
∞∑
k=0

(−1)k
2k+1 , S=

∞∑
k=0

1
(2k+1)2 , and T =

∞∑
n=1

1
n2 .

Solution: Note that sin nπ
2 = 0 when n is even and sin (2k+1)π

2 = (−1)k, so evaluating at x = π
2 gives

1 = f
(
π
2

)
=

∑
n odd

4
πn sin nπ

2 = 4
π

∑
k≥0

1
(2k+1) sin (2k+1)π

2 = 4
π

∑
k≥0

(−1)k
2k+1 = 4

πR.

Thus we find that R = π
4 . Next, note that

‖f‖2 =

∫ π

−π
f(x)2 dx =

∫ π

−π
1 dx = 2π.

so, by Parseval’s identity, we have

2π = ‖f‖2 = π
∑

n odd

(
4
πn

)2
= 16

π S

so that S = 2π
16/π = π2

8 . Finally, notice that we can write
∑

n even

1
n2 =

∑
k≥1

1
(2k)2 = 1

4

∑
k≥1

1
k2 = T so we have

T =
∑

n even

1
n2 +

∑
n odd

1
n2 = 1

4T + S so that S = 3
4T , and hence T = 4

3S = 4
3
π2

8 = π2

6 .



[10] 4: (a) Find the solution u(x, y) to Laplace’s equation ∂2u
∂x2 + ∂2u

∂y2 = 0 for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1 which satisfies

the boundary conditions u(x, 0) = x, u(x, 1) = 1, u(0, y) = y and u(2, y) = 2− y.

Solution: We choose u(x, y) = x + y − xy. Then u satisfies Laplace’s equation and we have u(x, 0) = x,
u(x, 1) = x+ 1− x = 1, u(0, y) = y and u(2, y) = 2 + y − 2y = 2− y.

(b) Find the solution u = u(x, t) to the heat equation ∂u
∂t = 4∂

2u
∂x2 for 0 ≤ x ≤ 2 and t ≥ 0, satisfying

the insulated ends condition ∂u
∂x (0, t) = 0 and ∂u

∂x (2, t) = 0 for all t ≥ 0 and the initial condition u(x, 0) =
2 cos2(πx) for all 0 ≤ x ≤ 2.

Solution: Taking c = 2, ` = 2, and f(x) = 2 cos2(πx) = 1 + cos(2πx) for 0 ≤ x ≤ 2, the desired solution
u = u(x, t) to Laplace’s equation is given by

u(x, t) =
∑
n≥0

ane
−(cnπ/`)2t

cos
(
nπ
` x
)

=
∑
n≥0

ane
−(nπ)2t

cos
(
nπ
2 x
)

where the constants an are the Fourier coefficients for the even 2`-periodic (that is 4-periodic) function given
by f(x) = 1 + cos(2πx) for 0 ≤ x ≤ π, namely a0 = 1 and a4 = 1 and an = 0 for n 6= 0, 4. The solution is

u(x, t) = 1 + e
−(4π)2t

cos(2πx).

(c) Find all negative values k < 0 for which there exists a non-zero solution to the ODE y′′ = ky for y = y(x)
with y(0) = 0 and y′(2) = 0.

Solution: Let k < 0, say k = −σ2 with σ > 0. The DE becomes y′′ + σ2y = 0 which has solutions
y = y(x) = a sin(σx) + b cos(σx). To get y(0) = 0 we need b = 0 so that y(x) = a sin(σx) and hence
y′(x) = σa cos(σx). To get y′(2) = 0 we need σa cos(2σ) = 0. When a = 0 we get the zero solution, so for a
non-zero solution we need cos(2σ) = 0, which occurs when 2σ = π

2 + πn, that is when σ = π
4 + nπ

2 , for some

integer n ≥ 0. Thus we get non-zero solutions when k = −σ2 = −
(
π
4 + nπ

2

)2
for some 0 ≤ n ∈ Z. For this

value of k, we remark that the solution is given by y = yn(x) = an sin
((
π
4 + nπ

2

)
x
)
.



[10] 5: (a) Use Euler’s method with step size h = ∆t = 1
2 to approximate the point (x(1), y(1)) when (x(t), y(t)) is

the solution to x′ = y2 − 1 and y′ = x+ y with x(0) = y(0) = 0.

Solution: We obtain
k tk xk yk y2k−1 xk+yk
0 0 0 0 −1 0
1 1

2 − 1
2 0 −1 − 1

2
2 1 −1 − 1

4

Thus (x(1), y(1)) ∼= (x2, y2) =
(
− 1,− 1

4

)
.

(b) Find the first approximation
(
x1

y1

)
when Newton’s method is used to approximate a solution to the

equation
(
2+x−y2
2+y−x2

)
=
(
0
0

)
starting with

(
x0

y0

)
=
(

1
−1
)
.

Solution: Let F
(
x
y

)
=

(
2 + x− y2
2 + y − x2

)
. Then

DF
(
x
y

)
=

(
2 −2y
−2x 1

)
, F
(

1
−1
)

=

(
2
0

)
, DF

(
1
−1
)

=

(
1 2
−2 1

)
, DF

(
1
−1
)−1

= 1
5

(
1 −2
2 1

)
and so(

x1
y1

)
= F

(
1
−1
)
−DF

(
1
−1
)−1

F
(

1
−1
)

=

(
1
−1

)
− 1

5

(
1 2
−2 1

)(
2
0

)
=

(
1
−1

)
− 1

5

(
2
−4

)
= 1

5

(
3
−9

)
.

(c) Find the weights w0, w1 and w2 for the Newton-Cotes quadrature rule using the points x0 = 0, x1 = 1

and x2 = 3 in the interval [0, 3] to give
∫ 3

0
f(x) dx ∼=

2∑
k=0

wkf(xk).

Solution: First we let g0(x) = (x−1)(x−3)
(0−1)(0−3) = 1

3 (x − 1)(x − 3), and g1(x) = (x−0)(x−3)
(1−0)(1−3) = − 1

2x(x − 3) and

g2(x) = (x−0)(x−1)
(3−0)(3−1) = 1

6x(x− 1), and then we choose

w0 =
∫ 3

0
g0(x) dx = 1

3

∫ 3

0
x2 − 4x+ 3 dx = 1

3

[
1
3x

3 − 2x2 + 3x
]3
0

= 3− 6 + 3 = 0,

w1 =
∫ 3

0
g1(x) dx = − 1

2

∫ 3

0
x2 − 3x dx = − 1

2

[
1
3x

3 − 3
2x

2
]3
0

= − 9
2

(
1− 3

2

)
= 9

4 , and

w2 =
∫ 3

0
g2(x) dx = 1

6

∫ 3

0
x2 − x dx = 1

6

[
1
3x

3 − 1
2x

2
]3
0

= 9
6

(
1− 1

2

)
= 3

4 .

For an alternate solution, we require that
∑2
k=0 wkp(xk) =

∫ 3

0
p(x) dx for each p(x) ∈ {1, x, x2}. Taking

p(x) = 1 gives w0 + w1 + w2 =
∫ 3

0
1 dx = 3 (1), taking p(x) = x gives 0w0 + 1w1 + 3w3 =

∫ 3

0
x dx = 9

2 (2)

and taking p(x) = x2 gives 0w0 + 1w1 + 9w2 =
∫ 3

0
x2 dx = 9 (3). We solve these 3 equations: 1 1 1

0 1 3
0 1 9

∣∣∣∣∣∣
3
9
2
9

 ∼
 1 0 −2

0 1 3
0 0− 6

∣∣∣∣∣∣
− 3

2
9
2
9
2

 ∼
 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣
0
9
4
3
4


Thus, as in the first solution, we take w0 = 0, w1 = 9

4 and w2 = 3
4 .


