

[10] **1:** (a) For the pair of ODEs $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x^2 + y - 1 \\ 2y - xy \end{pmatrix}$, find all the equilibrium points.

Solution: A point (x, y) is an equilibrium point when $y = 1 - x^2$ (1) and $y(2 - x) = 0$ (2). From (2) we find that $y = 0$ or $x = 2$. When $y = 0$, equation (1) gives $x^2 = 1$ so that $x = \pm 1$, and when $x = 2$ equation (1) gives $y = 1 - 2^2 = -3$. Thus the equilibrium points are $(x, y) = (\pm 1, 0), (2, -3)$.

(b) For $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} xy + x \\ y^2 - x \end{pmatrix}$, determine whether $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ is attracting or repelling.

Solution: Let $F(x, y) = \begin{pmatrix} xy + x \\ y^2 - x \end{pmatrix}$. Then $DF(x, y) = \begin{pmatrix} y+1 & x \\ -1 & 2y \end{pmatrix}$. Let $A = DF(1, -1) = \begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix}$. The characteristic polynomial is $g(r) = r^2 + 2r + 1 = (r + 1)^2$. The only eigenvalue is $r = -1$, which is negative, so the equilibrium point $(1, -1)$ is attracting.

(c) For $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} xy^2 \\ yx - y \end{pmatrix}$, find a conserved quantity $H(x, y)$.

Solution: We need to solve the DE $\frac{dy}{dx} = \frac{y'}{x'} = \frac{yx - y}{xy^2} = \frac{x-1}{xy}$. The DE is separable, so we write it as $y dy = \frac{x-1}{x} dx$ and integrate both sides to get $\frac{1}{2}y^2 = \int 1 - \frac{1}{x} dx = x - \ln x + c$. Thus $H(x, y) = \frac{1}{2}y^2 - x + \ln x$ is a conserved quantity.

[10] **2:** (a) Find the 4th Taylor polynomial at 0 for the solution to the IVP $y' + xy = 1 + x^2$ with $y(0) = 2$.

Solution: Let $y = c_0 + c_1x + c_2x^2 + c_3x^3 + \dots$ and $y' = c_1 + 2c_2x + 3c_3x^2 + \dots$. Put this in the DE to get

$$(c_1 + 2c_2x + 3c_3x^2 + 4c_4x^3 + \dots) + (c_0x + c_1x^2 + c_2x^3 + \dots) = 1 + x.$$

To get $y(0) = 2$ we need $c_0 = 2$, and then we equate coefficients of x^n in the above equation: By equating coefficients of x^0 we get $c_1 = 1$. From the coefficients of x^1 we get $2c_2 + c_0 = 0$ so that $c_2 = -\frac{1}{2}c_0 = -\frac{1}{2} \cdot 2 = -1$. From x^2 we get $3c_3 + c_1 = 1$ so that $c_3 = \frac{1}{3}(1 - c_1) = \frac{1}{3}(1 - 1) = 0$. From x^3 we get $4c_4 + c_2 = 0$ so that $c_4 = -\frac{1}{4}c_2 = -\frac{1}{4}(-1) = \frac{1}{4}$. Thus the 4th Taylor polynomial is

$$y = c_0 + c_1x + c_2x^2 + c_3x^3 + c_4x^4 = 2 + x - \frac{1}{2}x^2 + \frac{1}{4}x^4.$$

(b) Consider the ODE $x^2y'' - x^2y' + (x-2)y = 0$. Following Frobenius' method, find two values of r such that the DE has a solution of the form $y = \sum_{n=0}^{\infty} c_n x^{n+r}$, then find an exact, closed form formula for a solution with $r = -1$ and $c_0 = 1$.

Solution: Let $y = \sum_{n \geq 0} c_n x^{n+r}$, $y' = \sum_{n \geq 0} (n+r)c_n x^{n+r-1}$ and $y'' = \sum_{n \geq 0} (n+r)(n+r-1)c_n x^{n+r-2}$. Put these in the DE to get

$$\begin{aligned} 0 &= \sum_{n \geq 0} (n+r)(n+r-1)c_n x^{n+r} - \sum_{n \geq 0} (n+r)c_n x^{n+r+1} + \sum_{n \geq 0} c_n x^{n+r+1} - \sum_{n \geq 0} 2c_n x^{n+r} \\ &= x^r \left(\sum_{m \geq 0} (m+r)(m+r-1)c_m x^m - \sum_{m \geq 1} (m+r-1)c_{m-1} x^m + \sum_{m \geq 1} c_{m-1} x^m - \sum_{m \geq 0} 2c_m x^m \right) \\ 0 &= \sum_{m \geq 0} ((m+r)(m+r-1) - 2)c_m x^m - \sum_{m \geq 1} (m+r-2)c_{m-1} x^m \end{aligned}$$

When $m = 0$, if $c_0 \neq 0$ then equating the coefficient of x^0 gives $r(r-1) - 2 = 0$, that is $r^2 - r - 2 = 0$, so that $(r-2)(r+1) = 0$. To get a non-zero solution we need $r = 2$ or $r = -1$.

When $r = -1$ and $c_0 = 1$, equating the coefficient of x_m , $m \geq 1$ gives $((m-1)(m-2) - 2)c_m - (m-3)c_{m-1} = 0$ so that

$$c_m = \frac{m-3}{(m-1)(m-2)-2} c_{m-1} = \frac{m-3}{m^2-3m} c_{m-1} = \frac{1}{m} c_{m-1}.$$

Thus $c_n = \frac{1}{n!}$ for all $n \geq 0$, and the solution is $y = x^{-1} \sum_{n \geq 0} \frac{1}{n!} x^n = \frac{1}{x} e^x$.

[10] **3:** (a) Find the Fourier series for the 2π -periodic function f with $f(x) = |x|$ for $-\pi \leq x \leq \pi$.

Solution: Since f is even we have $b_n = 0$ for all $n \geq 0$ and we have

$$\begin{aligned} a_0 &= \frac{1}{\pi} \int_0^\pi x \, dx = \frac{1}{\pi} \left[\frac{1}{2} x^2 \right]_0^\pi = \frac{\pi}{2} \\ a_n &= \frac{2}{\pi} \int_0^\pi x \cos nx \, dx = \frac{2}{\pi} \left(\left[\frac{1}{n} x \sin nx \right]_0^\pi - \int_0^\pi \frac{1}{n} \sin nx \, dx \right) \\ &= \frac{2}{\pi} \left(0 + \left[\frac{1}{n^2} \cos nx \right]_0^\pi \right) = \frac{2}{\pi n^2} ((-1)^n - 1) = \begin{cases} 0 & \text{, if } n \text{ is even} \\ -\frac{4}{\pi n^2} & \text{, if } n \text{ is odd} \end{cases}. \end{aligned}$$

Thus the Fourier series of f is given by $f(x) = \frac{\pi}{2} - \sum_{n \text{ odd}} \frac{4}{\pi n^2} \cos nx$.

(b) Let f be the 2π -periodic function with $f(x) = -1$ for $-\pi \leq x < 0$ and $f(x) = 1$ for $0 \leq x < \pi$. The Fourier series of f is given by $\sum_{n \text{ odd}} \frac{4}{\pi n} \sin nx$. By evaluating at $x = \frac{\pi}{2}$, and by using Parseval's identity, find

$$R = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}, \quad S = \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2}, \quad \text{and} \quad T = \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Solution: Note that $\sin \frac{n\pi}{2} = 0$ when n is even and $\sin \frac{(2k+1)\pi}{2} = (-1)^k$, so evaluating at $x = \frac{\pi}{2}$ gives

$$1 = f\left(\frac{\pi}{2}\right) = \sum_{n \text{ odd}} \frac{4}{\pi n} \sin \frac{n\pi}{2} = \frac{4}{\pi} \sum_{k \geq 0} \frac{1}{(2k+1)} \sin \frac{(2k+1)\pi}{2} = \frac{4}{\pi} \sum_{k \geq 0} \frac{(-1)^k}{2k+1} = \frac{4}{\pi} R.$$

Thus we find that $R = \frac{\pi}{4}$. Next, note that

$$\|f\|^2 = \int_{-\pi}^{\pi} f(x)^2 \, dx = \int_{-\pi}^{\pi} 1 \, dx = 2\pi.$$

so, by Parseval's identity, we have

$$2\pi = \|f\|^2 = \pi \sum_{n \text{ odd}} \left(\frac{4}{\pi n} \right)^2 = \frac{16}{\pi} S$$

so that $S = \frac{2\pi}{16/\pi} = \frac{\pi^2}{8}$. Finally, notice that we can write $\sum_{n \text{ even}} \frac{1}{n^2} = \sum_{k \geq 1} \frac{1}{(2k)^2} = \frac{1}{4} \sum_{k \geq 1} \frac{1}{k^2} = T$ so we have

$$T = \sum_{n \text{ even}} \frac{1}{n^2} + \sum_{n \text{ odd}} \frac{1}{n^2} = \frac{1}{4} T + S \text{ so that } S = \frac{3}{4} T, \text{ and hence } T = \frac{4}{3} S = \frac{4}{3} \frac{\pi^2}{8} = \frac{\pi^2}{6}.$$

[10] **4:** (a) Find the solution $u(x, y)$ to Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ for $0 \leq x \leq 2$ and $0 \leq y \leq 1$ which satisfies the boundary conditions $u(x, 0) = x$, $u(x, 1) = 1$, $u(0, y) = y$ and $u(2, y) = 2 - y$.

Solution: We choose $u(x, y) = x + y - xy$. Then u satisfies Laplace's equation and we have $u(x, 0) = x$, $u(x, 1) = x + 1 - x = 1$, $u(0, y) = y$ and $u(2, y) = 2 + y - 2y = 2 - y$.

(b) Find the solution $u = u(x, t)$ to the heat equation $\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}$ for $0 \leq x \leq 2$ and $t \geq 0$, satisfying the insulated ends condition $\frac{\partial u}{\partial x}(0, t) = 0$ and $\frac{\partial u}{\partial x}(2, t) = 0$ for all $t \geq 0$ and the initial condition $u(x, 0) = 2 \cos^2(\pi x)$ for all $0 \leq x \leq 2$.

Solution: Taking $c = 2$, $\ell = 2$, and $f(x) = 2 \cos^2(\pi x) = 1 + \cos(2\pi x)$ for $0 \leq x \leq 2$, the desired solution $u = u(x, t)$ to Laplace's equation is given by

$$u(x, t) = \sum_{n \geq 0} a_n e^{-(cn\pi/\ell)^2 t} \cos\left(\frac{n\pi}{\ell} x\right) = \sum_{n \geq 0} a_n e^{-(n\pi)^2 t} \cos\left(\frac{n\pi}{2} x\right)$$

where the constants a_n are the Fourier coefficients for the even 2ℓ -periodic (that is 4-periodic) function given by $f(x) = 1 + \cos(2\pi x)$ for $0 \leq x \leq \pi$, namely $a_0 = 1$ and $a_4 = 1$ and $a_n = 0$ for $n \neq 0, 4$. The solution is

$$u(x, t) = 1 + e^{-(4\pi)^2 t} \cos(2\pi x).$$

(c) Find all negative values $k < 0$ for which there exists a non-zero solution to the ODE $y'' = ky$ for $y = y(x)$ with $y(0) = 0$ and $y'(2) = 0$.

Solution: Let $k < 0$, say $k = -\sigma^2$ with $\sigma > 0$. The DE becomes $y'' + \sigma^2 y = 0$ which has solutions $y = y(x) = a \sin(\sigma x) + b \cos(\sigma x)$. To get $y(0) = 0$ we need $b = 0$ so that $y(x) = a \sin(\sigma x)$ and hence $y'(x) = \sigma a \cos(\sigma x)$. To get $y'(2) = 0$ we need $\sigma a \cos(2\sigma) = 0$. When $a = 0$ we get the zero solution, so for a non-zero solution we need $\cos(2\sigma) = 0$, which occurs when $2\sigma = \frac{\pi}{2} + \pi n$, that is when $\sigma = \frac{\pi}{4} + \frac{n\pi}{2}$, for some integer $n \geq 0$. Thus we get non-zero solutions when $k = -\sigma^2 = -\left(\frac{\pi}{4} + \frac{n\pi}{2}\right)^2$ for some $0 \leq n \in \mathbb{Z}$. For this value of k , we remark that the solution is given by $y = y_n(x) = a_n \sin\left(\left(\frac{\pi}{4} + \frac{n\pi}{2}\right)x\right)$.

[10] 5: (a) Use Euler's method with step size $h = \Delta t = \frac{1}{2}$ to approximate the point $(x(1), y(1))$ when $(x(t), y(t))$ is the solution to $x' = y^2 - 1$ and $y' = x + y$ with $x(0) = y(0) = 0$.

Solution: We obtain

k	t_k	x_k	y_k	$y_k^2 - 1$	$x_k + y_k$
0	0	0	0	-1	0
1	$\frac{1}{2}$	$-\frac{1}{2}$	0	-1	$-\frac{1}{2}$
2	1	-1	$-\frac{1}{4}$	0	

Thus $(x(1), y(1)) \cong (x_2, y_2) = (-1, -\frac{1}{4})$.

(b) Find the first approximation $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ when Newton's method is used to approximate a solution to the equation $\begin{pmatrix} 2+x-y^2 \\ 2+y-x^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ starting with $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Solution: Let $F\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2+x-y^2 \\ 2+y-x^2 \end{pmatrix}$. Then

$$DF\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & -2y \\ -2x & 1 \end{pmatrix}, \quad F\begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \quad DF\begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}, \quad DF\begin{pmatrix} 1 \\ -1 \end{pmatrix}^{-1} = \frac{1}{5} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$$

and so

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = F\begin{pmatrix} 1 \\ -1 \end{pmatrix} - DF\begin{pmatrix} 1 \\ -1 \end{pmatrix}^{-1} F\begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \frac{1}{5} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \frac{1}{5} \begin{pmatrix} 2 \\ -4 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 3 \\ -9 \end{pmatrix}.$$

(c) Find the weights w_0 , w_1 and w_2 for the Newton-Cotes quadrature rule using the points $x_0 = 0$, $x_1 = 1$ and $x_2 = 3$ in the interval $[0, 3]$ to give $\int_0^3 f(x) dx \cong \sum_{k=0}^2 w_k f(x_k)$.

Solution: First we let $g_0(x) = \frac{(x-1)(x-3)}{(0-1)(0-3)} = \frac{1}{3}(x-1)(x-3)$, and $g_1(x) = \frac{(x-0)(x-3)}{(1-0)(1-3)} = -\frac{1}{2}x(x-3)$ and $g_2(x) = \frac{(x-0)(x-1)}{(3-0)(3-1)} = \frac{1}{6}x(x-1)$, and then we choose

$$w_0 = \int_0^3 g_0(x) dx = \frac{1}{3} \int_0^3 x^2 - 4x + 3 dx = \frac{1}{3} \left[\frac{1}{3}x^3 - 2x^2 + 3x \right]_0^3 = 3 - 6 + 3 = 0,$$

$$w_1 = \int_0^3 g_1(x) dx = -\frac{1}{2} \int_0^3 x^2 - 3x dx = -\frac{1}{2} \left[\frac{1}{3}x^3 - \frac{3}{2}x^2 \right]_0^3 = -\frac{9}{2} \left(1 - \frac{3}{2} \right) = \frac{9}{4}, \text{ and}$$

$$w_2 = \int_0^3 g_2(x) dx = \frac{1}{6} \int_0^3 x^2 - x dx = \frac{1}{6} \left[\frac{1}{3}x^3 - \frac{1}{2}x^2 \right]_0^3 = \frac{9}{6} \left(1 - \frac{1}{2} \right) = \frac{3}{4}.$$

For an alternate solution, we require that $\sum_{k=0}^2 w_k p(x_k) = \int_0^3 p(x) dx$ for each $p(x) \in \{1, x, x^2\}$. Taking $p(x) = 1$ gives $w_0 + w_1 + w_2 = \int_0^3 1 dx = 3$ (1), taking $p(x) = x$ gives $0w_0 + 1w_1 + 3w_3 = \int_0^3 x dx = \frac{9}{2}$ (2) and taking $p(x) = x^2$ gives $0w_0 + 1w_1 + 9w_2 = \int_0^3 x^2 dx = 9$ (3). We solve these 3 equations:

$$\left(\begin{array}{ccc|c} 1 & 1 & 1 & 3 \\ 0 & 1 & 3 & \frac{9}{2} \\ 0 & 1 & 9 & 9 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 0 & -2 & -\frac{3}{2} \\ 0 & 1 & 3 & \frac{9}{2} \\ 0 & 0 & 6 & \frac{9}{2} \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & \frac{9}{4} \\ 0 & 0 & 1 & \frac{3}{4} \end{array} \right)$$

Thus, as in the first solution, we take $w_0 = 0$, $w_1 = \frac{9}{4}$ and $w_2 = \frac{3}{4}$.