

SYDE Advanced Math 2, Solutions to Assignment 9

1: Find the Fourier series for the 2π -periodic function $f : \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x) = x$ when $-\pi \leq x < \pi$, then use Parseval's Identity to show that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Solution: We have

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x \, dx = 0, \text{ and}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos nx \, dx = 0,$$

and Integration by Parts gives

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx \, dx = \frac{1}{\pi} \left(\left[-\frac{1}{n} x \cos nx \right]_{-\pi}^{\pi} + \int_{-\pi}^{\pi} \frac{1}{n} \cos nx \, dx \right) = \frac{1}{\pi} \left(\frac{(-1)^{n+1} 2\pi}{n} + 0 \right) = \frac{2(-1)^{n+1}}{n}.$$

Thus the Fourier series of f is

$$s(f)(x) = \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin nx.$$

By Parseval's Identity, we have

$$\|f\|_2^2 = 2\pi a_0(f) + \pi \sum_{n=1}^{\infty} a_n(f)^2 + \pi \sum_{n=1}^{\infty} b_n(f)^2 = \pi \sum_{n=1}^{\infty} \frac{4}{n^2} = 4\pi \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

On the other hand,

$$\|f\|_2^2 = \int_{-\pi}^{\pi} f(x)^2 \, dx = \int_{-\pi}^{\pi} x(x)^2 \, dx = \frac{2\pi^3}{3}$$

so we have $4\pi \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{2\pi^3}{3}$ and hence $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

2: Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be the function of period 4 given by $f(x) = 1$ for $-1 \leq x < 1$ and $f(x) = 0$ for $1 \leq x < 3$.

Find the Fourier series for f , then evaluate at $x = 0$ to find $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$.

Solution: Since $f(x)$ is even (except at the points of discontinuity $x = 1+2k, k \in \mathbb{Z}$) we have $b_n = 0$ for all n , and we have

$$a_0 = \frac{1}{4} \int_{-2}^2 f(x) dx = \frac{1}{4} \int_{-1}^1 1 dx = \frac{1}{2}, \text{ and}$$

$$a_n = \frac{1}{2} \int_{-2}^2 f(x) \cos\left(\frac{\pi n}{2} x\right) dx = \frac{1}{2} \int_{-1}^1 \cos\left(\frac{\pi n}{2} x\right) dx = \int_0^1 \cos\left(\frac{\pi n}{2} x\right) dx = \left[\frac{2}{n\pi} \sin\left(\frac{\pi n}{2} x\right) \right]_0^1$$

$$= \begin{cases} 0 & \text{if } n \text{ is even} \\ \frac{2}{n\pi} & \text{if } n = 1+4k, k \in \mathbb{Z} \\ -\frac{2}{n\pi} & \text{if } n = 3+4k, k \in \mathbb{Z} \end{cases}.$$

Since $f(x)$ is equal to the sum of its Fourier series (except at the points of discontinuity), we have

$$f(x) = \frac{1}{2} + \frac{2}{\pi} \left(\frac{1}{1} \cos\left(\frac{\pi}{2} x\right) - \frac{1}{3} \cos\left(\frac{3\pi}{2} x\right) + \frac{1}{5} \cos\left(\frac{5\pi}{2} x\right) - \frac{1}{7} \cos\left(\frac{7\pi}{2} x\right) + \dots \right)$$

$$= \frac{1}{2} + \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)} \cos\left(\frac{(2k+1)\pi}{2} x\right).$$

Evaluating at $x = 0$ gives

$$1 = f(0) = \frac{1}{2} + \frac{2}{\pi} \left(\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots \right) = \frac{1}{2} + \frac{2}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}$$

so we have $\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}$.

3: Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be the 2π -periodic function with $f(x) = x^3 - \pi^2 x$ for $-\pi \leq x \leq \pi$. Find the Fourier series for f , then evaluate at $x = \frac{\pi}{2}$ to find $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^3}$.

Solution: Since $f(x)$ is odd we have $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = 0$ and $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = 0$ and $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_0^{\pi} (x^3 - \pi^2 x) \sin nx dx$. Integration by Parts gives

$$\int_0^{\pi} x \sin nx dx = \left[-\frac{1}{n} x \cos nx \right]_0^{\pi} + \int_0^{\pi} \frac{1}{n} \cos nx dx = -\frac{1}{n} \pi \cos n\pi = -\frac{(-1)^n \pi}{n}.$$

and

$$\begin{aligned} \int_0^{\pi} x^3 \sin nx dx &= \left[-\frac{1}{n} x^3 \cos nx \right]_0^{\pi} + \int_0^{\pi} \frac{3}{n} x^2 \cos nx dx \\ &= -\frac{(-1)^n \pi^3}{n} + \left[\frac{3}{n^2} x^2 \sin nx \right]_0^{\pi} - \int_0^{\pi} \frac{6}{n^2} x \sin nx dx \\ &= -\frac{(-1)^n \pi^3}{n} + 0 + \frac{6}{n^2} \frac{(-1)^n \pi}{n} = (-1)^n \left(\frac{6\pi}{n^3} - \frac{\pi^3}{n} \right) \end{aligned}$$

and so

$$b_n = \frac{2}{\pi} \int_0^{\pi} (x^3 - \pi^2 x) \sin nx dx = \frac{2}{\pi} \left((-1)^n \left(\frac{6\pi}{n^3} - \frac{\pi^3}{n} \right) + (-1)^n \frac{\pi^3}{n} \right) = \frac{(-1)^n 12}{n^3}.$$

Since $f(x) = x^3 - \pi^2 x$ for $-\pi \leq x \leq \pi$, we have $f\left(\frac{\pi}{2}\right) = \left(\frac{\pi}{2}\right)^3 - \pi^2 \left(\frac{\pi}{2}\right) = -\frac{3\pi^3}{8}$. On the other hand, since $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n 12}{n^3} \sin nx$, and since when $n = 2k$ we have $\sin \frac{n\pi}{2} = 0$ and when $n = 2k+1$ we have

$\sin \frac{n\pi}{2} = (-1)^k$, we have $f\left(\frac{\pi}{2}\right) = \sum_{n=1}^{\infty} \frac{(-1)^n 12}{n^3} \sin \frac{n\pi}{2} = \sum_{k=0}^{\infty} \frac{(-1)^{2k+1} 12}{(2k+1)^3} (-1)^k = -\sum_{k=0}^{\infty} \frac{(-1)^k 12}{(2k+1)^3}$. Thus

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^3} = -\frac{1}{12} f\left(\frac{\pi}{2}\right) = \frac{1}{12} \cdot \frac{3\pi^3}{8} = \frac{\pi^3}{32}.$$

4: Use Fourier series to solve the ODE $4x'' + x = f(t)$, for $x = x(t)$, where $f : \mathbb{R} \rightarrow \mathbb{R}$ is the 2π -periodic function given by $f(t) = t^2$ for $-\pi \leq t \leq \pi$.

Solution: First let us find the Fourier series for $f(t)$. Since f is even we have $b_n = 0$ for all n , and we have We have

$$\begin{aligned} a_0 &= \frac{1}{\pi} \int_0^\pi t^2 dt = \frac{1}{\pi} \left[\frac{1}{3} t^3 \right]_0^\pi = \frac{\pi^2}{3}, \text{ and} \\ a_n &= \frac{2}{\pi} \int_0^\pi t^2 \cos nt dt \\ &= \frac{2}{\pi} \left(\left[\frac{1}{n} x^2 \sin nx \right]_0^\pi - \int_0^\pi \frac{2}{\pi} x \sin nx dx \right) \\ &= \frac{2}{\pi} \left(0 + \left[\frac{2}{n^2} x \cos nx \right]_0^\pi + \int_0^\pi \frac{2}{n^2} \cos nx dx \right) \\ &= \frac{2}{\pi} \left(0 + \frac{2}{n^2} \pi (-1)^n + 0 \right) = \frac{4}{n^2} (-1)^n. \end{aligned}$$

Since $f(x)$ is equal to the sum of its Fourier series we have

$$f(x) = \frac{\pi^2}{3} + \sum_{n \geq 1} \frac{4(-1)^n}{n^2} \cos nt.$$

To solve the homogeneous DE $4x'' + x = 0$ we try $x = e^{rt}$: we need $4r^2 + 1 = 0$ so that $r = \pm \frac{1}{2}i$, and the general real solution is given by $x = x(t) = a \cos \frac{t}{2} + b \sin \frac{t}{2}$. By inspection, a particular solution to the DE $4x'' + x = \frac{\pi^2}{3}$ is given by the constant function $x = x_0(t) = \frac{\pi^2}{3}$. For each $n \in \mathbb{Z}^+$, to find a particular solution to the DE $4x'' + x = \cos nx$ we let $x = x_n(x) = A \cos nx + B \sin nx$ so that $x' = -An \sin nx + Bn \cos nx$ and $x'' = -An^2 \cos nx - Bn^2 \sin nx$. Put this in the DE to get

$$4(-An^2 \cos nt - Bn^2 \sin nt) + (A \cos nt + B \sin nt) = \cos nt$$

and equate the coefficients of $\cos nt$ and $\sin nt$ to get $-4An^2 + A = 1$ and $-4Bn^2 + B = 0$ so that $A = \frac{1}{1-4n^2}$ and $B = 0$. Thus a particular solution to the DE $4x'' + x = \cos nx$ is given by $x = x_n(t) = \frac{1}{1-4n^2} \cos nt$. Adding together multiples of the particular solutions $x = x_0(t)$ and $x = x_n(t)$, we find that a particular solution to the given DE $4x'' + x = f(x) = \frac{\pi^2}{3} + \sum_{n \geq 1} \frac{4(-1)^n}{n^2} \cos nt$ is given by

$$x = x_p(t) = x_0(t) + \sum_{n \geq 1} \frac{4(-1)^n}{n^2} x_n(t) = \frac{\pi^2}{3} + \sum_{n \geq 1} \frac{4(-1)^n}{n^2(1-4n^2)} \cos nt.$$

Thus the general solution to the given ODE $4x'' + x = f(t)$ is given by

$$x(t) = a \cos \frac{t}{2} + b \sin \frac{t}{2} + \frac{\pi^2}{3} + \sum_{n \geq 1} \frac{4(-1)^n}{n^2(1-4n^2)} \cos nt.$$