
SYDE Advanced Math 2, Solutions to Assignment 9

1: Find the Fourier series for the 2π-periodic function f : R → R given by f(x) = x when −π ≤ x < π, then

use Parseval’s Identity to show that
∞∑
n=1

1
n2 = π2

6 .

Solution: We have

a0 = 1
2π

∫ π

−π
x dx = 0 , and

an = 1
π

∫ π

−π
x cosnx dx = 0,

and Integration by Parts gives

bn = 1
π

∫ π

−π
x sinnx dx = 1

π

([
− 1

n x cosnx
]π
−π

+

∫ π

−π

1
n cosnx dx

)
= 1

π

( (−1)n+12π
n + 0

)
= 2(−1)n+1

n .

Thus the Fourier series of f is

s(f)(x) =
∞∑
n=1

2(−1)n+1

n sinnx.

By Parseval’s Identity, we have

‖f‖22 = 2π a0(f) + π
∞∑
n=1

an(f)2 + π
∞∑
n=1

bn(f) = π
∞∑
n=1

4
n2 = 4π

∞∑
n=1

1
n2 .

On the other hand,

‖f‖22 =

∫ π

−π
f(x)2 dx =

∫ π

−π
x(x)2 dx = 2π3

3

so we have 4π
∞∑
n=1

1
n2 = 2π3

3 and hence
∞∑
n=1

1
n2 = π2

6 .



2: Let f : R → R be the function of period 4 given by f(x) = 1 for −1 ≤ x < 1 and f(x) = 0 for 1 ≤ x < 3.

Find the Fourier series for f , then evaluate at x = 0 to find
∞∑
n=0

(−1)n
2n+1 .

Solution: Since f(x) is even (except at the points of discontinuity x=1+2k , k∈Z) we have bn=0 for all n,
and we have

a0 = 1
4

∫ 2

−2
f(x) dx = 1

4

∫ 1

−1
1 dx = 1

2 , and

an = 1
2

∫ 2

−2
f(x) cos

(
πn
2 x
)
dx = 1

2

∫ 1

−1
cos
(
nπ
2 x
)
dx =

∫ 1

0

cos
(
nπ
2 x
)
dx =

[
2
nπ sin

(
nπ
2 x
)]1

0

=


0 , if n is even

2
nπ , if n = 1+4k , k∈Z

− 2
nπ , if n = 3+4k , k∈Z

 .

Since f(x) is equal to the sum of its Fourier series (except at the points of discontinuity), we have

f(x) = 1
2 + 2

π

(
1
1 cos

(
π
2 x
)
− 1

3 cos
(
3π
2 x
)

+ 1
5 cos

(
5π
2 x
)
− 1

7 cos
(
7π
2 x
)

+ · · ·
)

= 1
2 +

∞∑
k=0

(−1)k
(2k+1) cos

( (2k+1)π
2 x

)
.

Evaluating at x = 0 gives

1 = f(0) = 1
2 + 2

π

(
1
1 −

1
3 + 1

5 −
1
7 + · · ·

)
= 1

2 + 2
π

∞∑
k=0

(−1)k
2k+1

so we have
∞∑
k=0

(−1)k
2k+1 = π

4 .



3: Let f : R → R be the 2π-periodic function with f(x) = x3 − π2x for −π ≤ x ≤ π. Find the Fourier series

for f , then evaluate at x = π
2 to find

∞∑
k=0

(−1)k
(2k+1)3 .

Solution: Since f(x) is odd we have a0 = 1
2π

∫ π

−π
f(x) dx = 0 and an = 1

π

∫ π

−π
f(x) cosnx dx = 0 and

bn = 1
π

∫ π

−π
f(x) sinnx dx = 2

π

∫ π

0

(x3 − π2x) sinnx dx. Integration by Parts gives∫ π

0

x sinnx dx =

[
− 1

n x cosnx

]π
0

+

∫ π

0

1
n cosnx dx = − 1

n π cosnπ = − (−1)nπ
n .

and ∫ π

0

x3 sinnx dx =

[
− 1

nx
3 cosnx

]π
0

+

∫ π

0

3
nx

2 cosnx dx

= − (−1)nπ3

n +

[
3
n2x

2 sinnx

]π
0

−
∫ π

0

6
n2x sinnx dx

= − (−1)nπ3

n + 0 + 6
n2

(−1)nπ
n = (−1)n

(
6π
n3 − π3

n

)
and so

bn = 2
π

∫ π

0

(
x3 − π2x) sinnx dx = 2

π

(
(−1)n

(
6π
n3 − π3

n

)
+ (−1)n π

3

n

)
= (−1)n12

n3 .

Since f(x) = x3 − π2x for −π ≤ x ≤ π, we have f
(
π
2

)
=
(
π
2

)3 − π2
(
π
2

)
= − 3π3

8 . On the other hand,

since f(x) =
∞∑
n=1

(−1)n12
n3 sinnx, and since when n = 2k we have sin nπ

2 = 0 and when n = 2k + 1 we have

sin nπ
2 = (−1)k, we have f

(
π
2

)
=
∞∑
n=1

(−1)n12
n3 sin nπ

2 =
∞∑
k=0

(−1)2k+112
(2k+1)3 (−1)k = −

∞∑
k=0

(−1)k12
(2k+1)3 . Thus

∞∑
k=0

(−1)k
(2k+1)3 = − 1

12 f
(
π
2

)
= 1

12 ·
3π3

8 = π3

32 .



4: Use Fourier series to solve the ODE 4x′′ + x = f(t), for x = x(t), where f : R → R is the 2π-periodic
function given by f(t) = t2 for −π ≤ t ≤ π.

Solution: First let us find the Fourier series for f(t). Since f is even we have bn = 0 for all n, and we have
We have

a0 = 1
π

∫ π

0

t2 dt = 1
π

[
1
3 t

3
]π
0

= π2

3 , and

an = 2
π

∫ π

0

t2 cosnt dt

= 2
π

([
1
nx

2 sinnx
]π
0
−
∫ π

0

2
πx sinnx dx

)
= 2

π

(
0 +

[
2
n2 x cosnx

]π
0

+

∫ π

0

2
n2 cosnx dx

)
= 2

π

(
0 + 2

n2π(−1)n + 0
)

= 4
n2 (−1)n.

Since f(x) is equal to the sum of its Fourier series we have

f(x) = π2

3 +
∑
n≥1

4(−1)n
n2 cosnt .

To solve the homogeneous DE 4x′′ + x = 0 we try x = ert: we need 4r2 + 1 = 0 so that r = ± 1
2 i, and the

general real solution is given by x = x(t) = a cos t2 + b sin t
2 . By inspection, a particular solution to the DE

4x′′+x = π2

3 is given by the constant function x = x0(t) = π2

3 . For each n ∈ Z+, to find a particular solution
to the DE 4x′′+x = cosnx we let x = xn(x) = A cosnx+B sinnx so that x′ = −An sinnx+Bn cosnx and
x′′ = −An2 cosnx−Bn2 sinnx. Put this in the DE to get

4
(
−An2 cosnt−Bn2 sinnt) + (A cosnt+B sinnt) = cosnt

and equate the coefficients of cosnt and sinnt to get −4An2 +A = 1 and −4Bn2 +B = 0 so that A = 1
1−4n2

and B = 0. Thus a particular solution to the DE 4x′′ + x = cosnx is given by x = xn(t) = 1
1−4n2 cosnt.

Adding together multiples of the particular solutions x = x0(t) and x = xn(t), we find that a particular

solution to the given DE 4x′′ + x = f(x) = π2

3 +
∑
n≥1

4(−1)n
n2 cosnt is given by

x = xp(t) = x0(t) +
∑
n≥1

4(−1)n
n2 xn(t) = π2

3 +
∑
n≥1

4(−1)n
n2(1−4n2) cosnt.

Thus the general solution to the given ODE 4x′′ + x = f(t) is given by

x(t) = a cos t2 + b sin t
2 + π2

3 +
∑
n≥1

4(−1)n
n2(1−4n2) cosnt.


