

1: Find the 5th Taylor polynomial, centred at 0, for the solution to the IVP $y'' + 2y' + e^x y = \sin x$ with $y(0) = 2$ and $y'(0) = 1$.

Solution: We try $y = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + c_5 x^5 + \dots$. Then $y' = c_1 + 2c_2 x + 3c_3 x^2 + 4c_4 x^3 + 5c_5 x^4 + \dots$, $y'' = 2c_2 + 6c_3 x + 12c_4 x^2 + 20c_5 x^3 + \dots$, and

$$\begin{aligned} e^x y &= \left(1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \dots\right) \left(a_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots\right) \\ &= \left(a_0 + (c_1 + c_0)x + (c_2 + c_1 + \frac{1}{2}c_0)x^2 + (c_3 + c_2 + \frac{1}{2}c_1 + \frac{1}{6}c_0)x^3 + \dots\right). \end{aligned}$$

Put these in the DE to get

$$\begin{aligned} &(2c_2 + 6c_3 x + 12c_4 x^2 + 20c_5 x^3 + \dots) + 2(c_1 + 2c_2 x + 3c_3 x^2 + 4c_4 x^3 + \dots) \\ &+ (c_0 + (c_1 + c_0)x + (c_2 + c_1 + \frac{1}{2}c_0)x^2 + (c_3 + c_2 + \frac{1}{2}c_1 + \frac{1}{6}c_0)x^3 + \dots) \\ &= \left(x - \frac{1}{6}x^3 + \dots\right). \end{aligned}$$

Equate coefficients to get $2c_2 + 2c_1 + c_0 = 0$ (1), $6c_3 + 4c_2 + c_1 + c_0 = 1$ (2), $12c_4 + 6c_3 + c_2 + c_1 + \frac{1}{2}c_0 = 0$ (3) and $20c_5 + 8c_4 + c_3 + c_2 + \frac{1}{2}c_1 + \frac{1}{6}c_0 = -\frac{1}{6}$ (4). To get $y(0) = 2$ we need $c_0 = 2$ and to get $y'(0) = 1$ we need $c_1 = 1$. Put these in the recursion formulas (1)-(4) to get $c_2 = \frac{-2c_1 - c_0}{2} = \frac{-2-2}{2} = -2$, $c_3 = \frac{1-4c_2 - c_1 - c_0}{6} = \frac{1+8-1-2}{6} = 1$, $c_4 = \frac{-6c_3 - c_2 - c_1 - \frac{1}{2}c_0}{12} = \frac{-6+2-1-1}{12} = -\frac{1}{2}$ and $c_5 = \frac{-\frac{1}{6}-8c_4 - c_3 - c_2 - \frac{1}{2}c_1 - \frac{1}{6}c_0}{20} = \frac{-\frac{1}{6}+4-1+2-\frac{1}{2}-\frac{1}{3}}{20} = \frac{1}{5}$. Thus the 5th Taylor polynomial is $T_5(x) = 2 + x - 2x^2 + x^3 - \frac{1}{2}x^4 + \frac{1}{5}x^5$.

2: Use the Power Series Method to solve the ODE $y'' + (x - 1)y' + y = 0$. Find two linearly independent power series solutions, centred at 0, one satisfying the initial conditions $y(0) = 1$, $y'(0) = 0$, and the other satisfying $y(0) = 0$, $y'(0) = 1$. For each solution, state the recurrence relation for the coefficients, and find the 5th Taylor polynomial centred at 0.

Solution: We try $y = \sum_{n \geq 0} c_n x^n$. Then $y' = \sum_{n \geq 1} n c_n x^{n-1}$ and $y'' = \sum_{n \geq 2} n(n-1) c_n x^{n-2}$. Put these in the DE to get

$$\begin{aligned} 0 &= y'' + (x - 1)y' + y \\ &= \sum_{n \geq 2} n(n-1) c_n x^{n-2} + \sum_{n \geq 1} n c_n x^n - \sum_{n \geq 1} n c_n x^{n-1} + \sum_{n \geq 0} c_n x^n \\ &= \sum_{m \geq 0} (m+2)(m+1) c_{m+2} x^m + \sum_{m \geq 1} m c_m x^m - \sum_{m \geq 0} (m+1) c_{m+1} x^m + \sum_{m \geq 0} c_m x^m \\ &= (2c_2 - c_1 + c_0)x^0 + \sum_{m \geq 1} ((m+2)(m+1)c_{m+2} - (m+1)c_{m+1} + (m+1)c_m)x^m. \end{aligned}$$

All coefficients vanish, so $c_2 = \frac{c_1 - c_0}{2}$ and $c_{m+2} = \frac{(m+1)c_{m+1} - (m+1)c_m}{(m+2)(m+1)} = \frac{c_{m+1} - c_m}{m+2}$ for $m \geq 1$. If $c_0 = 1$ and $c_1 = 0$ then the recursion formulas give $c_2 = \frac{0-1}{2} = -\frac{1}{2}$, $c_3 = \frac{-\frac{1}{2}-0}{3} = -\frac{1}{6}$, $c_4 = \frac{-\frac{1}{6}+\frac{1}{2}}{4} = \frac{1}{12}$ and $c_5 = \frac{\frac{1}{12}+\frac{1}{6}}{5} = \frac{1}{20}$, so the 5th Taylor polynomial is

$$T_5(y_1) = 1 - \frac{1}{2}x^2 - \frac{1}{6}x^3 + \frac{1}{12}x^4 + \frac{1}{20}x^5.$$

If $c_0 = 0$ and $c_1 = 1$ then the recursion formulas give $c_2 = \frac{1-0}{2} = \frac{1}{2}$, $c_3 = \frac{\frac{1}{2}-1}{3} = -\frac{1}{6}$, $c_4 = \frac{-\frac{1}{6}-\frac{1}{2}}{4} = -\frac{1}{6}$ and $c_5 = \frac{-\frac{1}{6}+\frac{1}{6}}{5} = 0$ and so the 5th Taylor polynomial for the solution y_2 is

$$T_5(y_2) = x + \frac{1}{2}x^2 - \frac{1}{6}x^3 - \frac{1}{6}x^4.$$

3: Use Frobenius' Method to solve the ODE $4xy'' + 2y' = y$. Find two linearly independent series solutions, centred at 0. For each solution, solve the recurrence relation to obtain an explicit formula for the n^{th} coefficient, then find a closed form formula for the solution.

Solution: We try $y = \sum_{n \geq 0} c_n x^{n+r}$ so $y' = \sum_{n \geq 0} (n+r)c_n x^{n+r-1}$ and $y'' = \sum_{n \geq 0} (n+r)(n+r-1)c_n x^{n+r-2}$. Put these in the DE to get

$$\begin{aligned}
 0 &= 4xy'' + 2y' - y \\
 &= \sum_{n \geq 0} 4(n+r)(n+r-1)c_n x^{n+r-1} + \sum_{n \geq 0} 2(n+r)c_n x^{n+r-1} - \sum_{n \geq 0} c_n x^{n+r} \\
 &= x^r \left(\sum_{m \geq -1} 4(m+r+1)(m+r)c_{m+1} x^m + \sum_{m \geq -1} 2(m+r+1)c_{m+1} x^m - \sum_{m \geq 0} c_m x^m \right) \\
 &= x^r \left(\sum_{m \geq -1} 2(m+r+1)(2m+2r+1)c_{m+1} x^m - \sum_{m \geq 0} c_m x^m \right) \\
 &= x^r \left(2r(2r-1)c_0 x^{-1} + \sum_{m \geq 0} (2(m+r+1)(2m+2r+1)c_{m+1} - c_m)x^m \right).
 \end{aligned}$$

All coefficients must vanish, so we have $r(2r-1) = 0$ and $c_{m+1} = \frac{c_m}{2(m+r+1)(2m+2r+1)}$ for $m \geq 0$. When $r = 0$, the recursion formula becomes $c_{m+1} = \frac{c_m}{2(m+1)(2m+1)} = \frac{c_m}{(2m+1)(2m+2)}$, so if $c_0 = 1$ then we get $c_1 = \frac{1}{1 \cdot 2}$, $c_2 = \frac{1}{1 \cdot 2 \cdot 3 \cdot 4}$, $c_3 = \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}$, and in general $c_n = \frac{1}{(2n)!}$. In this case the solution is

$$y_1 = x^0 \left(\sum_{n=0}^{\infty} \frac{x^n}{(2n)!} \right) = \cosh \sqrt{x}.$$

When $r = \frac{1}{2}$ the recursion formula becomes $c_{m+1} = \frac{c_m}{2(m+\frac{3}{2})(2m+2)} = \frac{c_m}{(2m+2)(2m+3)}$, so if $c_0 = 1$ then we get $c_1 = \frac{1}{2 \cdot 3}$, $c_2 = \frac{1}{2 \cdot 3 \cdot 4 \cdot 5}$ and in general $c_n = \frac{1}{(2n+1)!}$. In this case the solution is

$$y_2 = x^{1/2} \left(\sum_{n=0}^{\infty} \frac{x^n}{(2n+1)!} \right) = \sqrt{x} \cdot \frac{\sinh \sqrt{x}}{\sqrt{x}} = \sinh \sqrt{x}.$$

The general solution is $y = a \cosh \sqrt{x} + b \sinh \sqrt{x}$, for $x \geq 0$.

4: Use Frobenius' Method to solve the ODE $3x^2y'' + x(x-1)y' + y = 0$. Find two linearly independent series solutions, centred at 0. For each solution, solve the recurrence relation to obtain an explicit formula for the n^{th} coefficient. Find a closed form formula for one of the two solutions.

Solution: We try $y = \sum_{n \geq 0} c_n x^{n+r}$ so $y' = \sum_{n \geq 0} (n+r)c_n x^{n+r-1}$ and $y'' = \sum_{n \geq 0} (n+r)(n+r-1)c_n x^{n+r-2}$. Put these in the DE to get

$$\begin{aligned} 0 &= 3x^2y'' + x(x-1)y' + y \\ &= \sum_{n \geq 0} 3(n+r)(n+r-1)c_n x^{n+r} + \sum_{n \geq 0} (n+r)c_n x^{n+r+1} - \sum_{n \geq 0} (n+r)c_n x^{n+r} + \sum_{n \geq 0} c_n x^{n+r} \\ &= x^r \left(\sum_{m \geq 0} 3(m+r)(m+r-1)c_m x^m + \sum_{m \geq 1} (m+r-1)c_{m-1} x^m - \sum_{m \geq 0} (m+r)c_m x^m + \sum_{m \geq 0} a_m x^m \right) \\ &= x^r \left(\sum_{m \geq 0} (3(m+r)(m+r-1) - (m+r)+1)c_m x^m + \sum_{m \geq 1} (m+r-1)c_{m-1} x^m \right) \\ &= x^r \left((3r(r-1) - r + 1)c_0 x^0 + \sum_{m \geq 1} ((3(m+r)(m+r-1) - (m+r)+1)c_m + (m+r-1)c_{m-1}) x^m \right). \end{aligned}$$

All coefficients must vanish, so we have $3r(r-1) - r + 1 = 0$, that is $3r^2 - 4r + 1 = 0$ or equivalently $(3r-1)(r-1) = 0$ so $r = 1$ or $r = \frac{1}{3}$, and we have $c_m = \frac{-(m+r-1)c_{m-1}}{3(m+r)(m+r-1)-(m+r)+1} = \frac{-c_{m-1}}{3(m+r)-1}$.

When $r = 1$ the recursion formula becomes $c_m = \frac{-c_{m-1}}{3m+2}$. If we take $c_0 = 1$ then we have $c_1 = -\frac{1}{5}$, $c_2 = \frac{1}{5 \cdot 8}$, $c_3 = -\frac{1}{5 \cdot 8 \cdot 11}$, and in general $c_n = \frac{(-1)^n}{5 \cdot 8 \cdot 11 \cdots (3n+2)}$. In this case we obtain the solution

$$y_1 = x^1 \left(1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{5 \cdot 8 \cdot 11 \cdots (3n+2)} \right) = x - \frac{1}{5}x^2 + \frac{1}{5 \cdot 8}x^3 - \frac{1}{5 \cdot 8 \cdot 11}x^4 + \cdots.$$

When $r = \frac{1}{3}$ the recursion formula becomes $c_m = -\frac{c_{m-1}}{3m}$. If we set $c_0 = 1$ then we obtain $c_2 = -\frac{1}{3}$, $c_4 = \frac{1}{3 \cdot 6}$, $c_6 = -\frac{1}{3 \cdot 6 \cdot 9}$, and in general $c_n = \frac{(-1)^n}{3 \cdot 6 \cdot 9 \cdots (3n)} = \frac{(-1)^n}{3^n n!}$. In this case we obtain the solution

$$y_2 = x^{1/3} \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{3^n n!} \right) = x^{1/3} e^{-x/3}.$$