
SYDE Advanced Math 2, Solutions to Assignment 4

1: Consider the system

(
x′

y′

)
=

(
xy
x+ y

)
.

(a) In the region −3 ≤ x ≤ 3, −3 ≤ y ≤ 3, sketch the curves x′ = 0, y′ = 0, and y′

x′ = ± 1
2 ,±1± 2, sketch the

direction field field for this system, and sketch the three solution curves through (1,−1), (1, 1) and (−1, 1).

Solution: We have x′ = 0 when xy = 0, so along the x- and y-axes, the slope of any solution curve is vertical.
We have y′ = 0 when x+y = 0, so along the line y = −x, the slope of any solution curve is zero. The isocline
dy
dx = y′

x′ = c is given by x+y
xy = c, that is y = x

cx−1 . This is a hyperbola with vertical asymptote along x = 1
c

and horizontal asymptote along y = 1
c , and one branch of the hyperbola passes through the origin (0, 0).

The isoclines c = ± 1
2 ,±1,±2 are shown in peach, the slope field is shown in green, and the solution curves

are shown in blue.

(b) Use Euler’s method with step size ∆t = 1
2 to approximate the point

(
x(2), y(2)

)
, where

(
x(t), y(t)

)
is

the solution to the above system with
(
x(0), y(0)

)
= (−1, 1).

Solution: We let t0 = 0, x0 = −1, y0 = 1, then set tk+1 = tk + ∆t, xk+1 = xk + (xkyk)∆t and yk+1 = yk =
(xk + yk)∆t. The first few values of tk, xk, yk, xkyk and (xk + yk) are shown in the table below.

k tk xk yk xkyk xk + yk

0 0 −1 1 −1 0
1 1

2 − 3
2 1 − 3

2 − 1
2

2 1 − 9
4

3
4 − 27

16 − 3
2

3 3
2 − 99

32 0 0 − 99
32

4 2 − 99
32 − 99

64

Thus we have
(
x(2), y(2)

) ∼= (x4, y4) =
(
− 99

32 ,−
99
64

)
.



2: Consider the system

(
x′

y′

)
=

( 1
y

2
x

)
with initial conditions x(0) = 2 and y(0) = 1.

(a) Solve the system by first solving the DE dy
dx = y′

x′ for y = y(x), that is for y(t) = y(x(t)).

Solution: We wish to solve the dy
dx = 2y

x . This DE is separable since we can write it as dy
y = 2

x dx. Integrate

both sides to get ln |y| = 2 ln |x| + a, or equivalently, y = bx2, that is y(t) = b x(t)2. Now we return to the
system given by x′ = 1

y and y′ = 2
x . Put y = bx2 into the first DE x′ = 1

y to get x′ = 1
bx2 . This is separable:

we can write it as x2dx = 1
bdt and integrate to get 1

3x
3 = 1

b t + c, that is x3 = 3
b t + 3c. Letting p = 3

b and

q = 3c, we can also write this as x = (pt+ q)1/3. Finally, we need y = bx2 = 3
px

2 = 3
p (pt+ q)2/3. Thus the

solution is given by (
x
y

)
=

(
(pt+ q)1/3
3
p (pt+ q)2/3

)
where p, q ∈ R.

(b) Solve the system again, this time by eliminating y and y′ from x′′ to get a second order DE for x = x(t).

Solution: We have pair of DEs, x′ = 1
y (1) and y′ = 2

x (2). Differentiate equation (1), then use equations (1)

and (2) to get x′′ = − 1
y2 · y′ = −(x′)2 · 2x , that is xx′′ = 2(x′)2. Since this second order DE does not involve

the variable t, we let x′ = u and x′′ = uu′, and the DE becomes xuu′+ 2u2 = 0, that is u′+ 2
x u = 0. This is

linear. An integrating factor is λ = e

∫
2
x dx

= e2 ln x = x2 and the solution is u = 1
x2

∫
0 dx = a

x2 . Replace u
by x′ again, and we have the DE x′ = a

x2 , that is x2 x′ = a. Integrate both sides to get 1
3x

3 = at+ b, that is

x =
(
3at+ 3b)1/3. Let p = 3a and q = 3b and rewrite this as x =

(
pt+ q

)1/3
. Note that x′ = p

3

(
pt+ q

)−2/3
.

From equation (1) we have y = 1
x′ = 3

p

(
pt+ q

)2/3
. Thus the solution to the system is(

x
y

)
=

( (
pt+ q

)1/3
3
p

(
pt+ q

)2/3
)
.

(c) Find the unique solution to the system which satisfies the given initial conditions.

Solution: Put t = 0, x = 2 and y = 1 into our solutions x =
(
pt + q

)1/3
and y = 1

x′ = 3
p

(
pt + q

)2/3
to get

2 = q1/3 and 1 = 3
p q

2/3, so we must have q = 8 and p = 12. Thus the solution to the IVP is(
x
y

)
=

( (
12t+ 8

)1/3
1
4

(
12t+ 8

)2/3
)
.



3: Use reduction of order to solve the IVT given by

(
x′

y′

)
=

(
0 1

t
1
t 1

)(
x
y

)
with x(1) = 2 and y(1) = 3, given

that

(
x1
y1

)
=

(
1 + 1

t
− 1

t

)
is one solution.

Solution: We try

(
x2
y2

)
=

(
1 x1
0 y1

)(
u
v

)
. Putting this into the DE and simplifying gives

(
u′

v′

)
=

(
1 x1
0 y1

)−1
A

(
1
0

)
u =

(
1 1 + 1

t
0 − 1

t

)−1(
0
1
t

)
u =

(
1 t+ 1
0 −t

)(
0
1
t

)
u =

(
1 + 1

t
−1

)
u,

so we need u′ = (1 + 1
t )u and v′ = −u. The first ODE is linear as it can be written as u′− (1 + 1

t )u = 0. An

integrating factor is λ = e

∫
−(1+ 1

t )dt = e
−t−ln t

= 1
tet , and the solution is u = tet

∫
0 dt = atet. We choose

a = 1 so that u = tet. The second ODE becomes v′ = −u = −tet, so that v =
∫
−tet dt. Integrate by parts

to get v =
∫
−tet dt = −tet +

∫
et dt = −tet + et + b. We choose b = 0 so that v = (1− t)et. Thus we obtain

a second solution to the system(
x2
y2

)
=

(
1 x1
0 y1

)(
u
v

)
=

(
1 1 + 1

t
0 − 1

t

)(
tet

(1− t)et
)

=

(
tet + 1

t (1− t2)et

− 1
t (1− t)et

)
=

(
1
t e

t

(1− 1
t )et

)
and the general solution to the system is(

x
y

)
= A

(
x1
y1

)
+B

(
x2
y2

)
= A

(
1 + 1

t
− 1

t

)
+Bet

(
1
t

1− 1
t

)
.

To get y(1) = 3 we need 3 = −A so that A = −3, and to get x(1) = 2 we need 2 = 2A+ Be = −6 + Be so
that B = 8e−1. Thus the solution to the IVP is given by(

x
y

)
= −3

(
1 + 1

t
− 1

t

)
+ 8et−1

(
1
t

1− 1
t

)
.

Alternatively we can write this as x = 8et−1

t − 3(1 + 1
t ) and y = 3

t + 8et−1(1− 1
t ).



4: Use reduction of order and variation of parameters to solve

(
x′

y′

)
=

(
0 1

t2

1 1
t

)(
x
y

)
+

(
4

3
√
t

)
given that(

x1
y1

)
=

( 1
t

−1

)
is one solution to the associated homogeneous system.

Solution: First we use reduction of order to find a second independent solution to the homogeneous system.

We try

(
x2
y2

)
=

(
1 x1
0 y1

)(
u
v

)
. Put this into the associated homogeneous DE. and simplify to get

(
u′

v′

)
=

(
1 x1
0 y1

)−1
A

(
1
0

)
u =

(
1 1

t
0 −1

)−1(
0
1

)
u =

(
1 1

t
0 −1

)(
0
1

)
u =

(
1
2
−1

)
u,

so we need u′ = 1
tu and v′ = −u. The first ODE is linear. An integrating factor is λ = e

∫
− 1

t dt
= e
− ln t

= 1
t

and the solution is u = t
∫

0 dt = at. The second ODE becomes v′ = −u = −at, so that v = − 1
2at

2 + b. We
choose a = 2 and b = 0 so that u = 2t and v = −t2. Thus we obtain the second solution(

x2
y2

)
=

(
1x1
0y1

)(
u
v

)
=

(
1 1

t
0 −1

)(
2t
−t2

)
=

(
t
t2

)
.

Now that we have two independent solutions to the associated homogeneous system, we use variation

of parameters to find a particular solution to the given non-homogeneous system. We try

(
xp
yp

)
= X

(
u
v

)
where X =

(
x1 x2
y1 y2

)
=

(
1
t t
−1 t2

)
(and where we are re-using the letters u and v to denote two new

functions u = u(t) and v = v(t)). Putting this into the given system gives(
u′

v′

)
= X−1

(
4

3
√
t

)
=

(
1
t t
−1 t2

)−1(
4

3
√
t

)
=

1

2t

(
t2 −t
1 1

t

)(
4

3
√
t

)
=

1

2t

(
4t2 − 3t

√
t

4 + 3√
t

)
.

Since u′ = 2t− 3
2 t

1/2 we have u =
∫

2t− 3
2 t

1/2 dt = t2 − t3/2 (plus a constant which we choose to be zero),

and since v′ = 2t−1 + 3
2 t
−3/2 we have v = 2 ln t − 3t−1/2 (plus a constant). Thus we obtain the particular

solution(
xp
yp

)
=

(
1
t t
−1 t2

)(
u
v

)
=

(
1
t t
−1 t2

)(
t2 − t3/2

2 ln t− 3t−1/2

)
=

(
t− t1/2 + 2t ln t− 3t1/2

−t2 + t3/2 + 2t2 ln t− 3t3/2

)
.

The general solution to the given (non-homogeneous) system is(
x
y

)
= A

(
x1
y1

)
+B

(
x2
y2

)
+

(
xp
yp

)
= A

(
1
t
−1

)
+B

(
t
t2

)
+

(
t+ 2t ln t− 4t1/2

−t2 + 2t2 ln t− 2t3/2

)
.


