

1: Consider the system $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} xy \\ x+y \end{pmatrix}$.

(a) In the region $-3 \leq x \leq 3, -3 \leq y \leq 3$, sketch the curves $x' = 0, y' = 0$, and $\frac{y'}{x'} = \pm\frac{1}{2}, \pm 1 \pm 2$, sketch the direction field field for this system, and sketch the three solution curves through $(1, -1)$, $(1, 1)$ and $(-1, 1)$.

(b) Use Euler's method with step size $\Delta t = \frac{1}{2}$ to approximate the point $(x(2), y(2))$, where $(x(t), y(t))$ is the solution to the above system with $(x(0), y(0)) = (-1, 1)$.

2: Consider the system $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{1}{y} \\ \frac{2}{x} \end{pmatrix}$.

(a) Solve the system by first solving the DE $\frac{dy}{dx} = \frac{y'}{x'} = \frac{1}{y}$ for $y = y(x)$, that is for $y(t) = y(x(t))$.

(b) Solve the system again, this time by eliminating y and y' from x'' to get a second order DE for $x = x(t)$.

(c) Find the unique solution to the system which satisfies the initial conditions $x(0) = 2$ and $y(0) = 1$.

3: Given one solution $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ to the pair of linear homogeneous ODEs given by $\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$, (where A is a 2×2 matrix whose entries are continuous functions of t), we can often find a second independent solution by trying $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 & x_1 \\ 0 & y_1 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} u+x_1v \\ y_1v \end{pmatrix}$. Then we have $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} u'+x_1'v+x_1v' \\ y_1'v+y_1v' \end{pmatrix}$ and we have $A \begin{pmatrix} x \\ y \end{pmatrix} = A \begin{pmatrix} u+x_1v \\ y_1v \end{pmatrix} = A \begin{pmatrix} u \\ 0 \end{pmatrix} + A \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} v = \begin{pmatrix} a_{11}u \\ a_{21}u \end{pmatrix} + \begin{pmatrix} x_1' \\ y_1' \end{pmatrix} v = \begin{pmatrix} a_{11}u+x_1'v \\ a_{21}u+y_1'v \end{pmatrix}$, so the pair of ODEs becomes

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix} - A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} u'+x_1'v+x_1v' \\ y_1'v+y_1v' \end{pmatrix} - \begin{pmatrix} a_{11}u+x_1'v \\ a_{21}u+y_1'v \end{pmatrix} = \begin{pmatrix} u'+x_1v'-a_{11}u \\ y_1v'-a_{21}u \end{pmatrix}.$$

Eliminating v' from the two equations $u' + x_1v' - a_{11}u = 0$ and $y_1v' - a_{21}u = 0$ (by multiplying the first equation by y_1 and the second by x_1 and subtracting) gives $y_1u' - a_{11}y_1u + a_{21}x_1u = 0$ which is a first order linear (and separable) DE for $u = u(x)$. Once we solve for u we have found a second independent solution.

Use this method, which is known as **reduction of order**, to solve the IVT given by $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{t} \\ \frac{1}{t} & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ with $x(1) = 2$ and $y(1) = 3$, given that $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 1 + \frac{1}{t} \\ -\frac{1}{t} \end{pmatrix}$ is one solution.

4: Given n independent solutions x_1, x_2, \dots, x_n to the system of homogeneous linear ODEs $x' = Ax$, we can often find a particular solution to the nonhomogeneous system $x' = Ax + b$ by trying $x = x_p = x_1u_1 + x_2u_2 + \dots + x_nu_n = Xu$, where X is the matrix with columns x_1, \dots, x_n and $u = (u_1, \dots, u_n)^T$. We then have $x' = X'u + Xu' = AXu + Xu'$ and $Ax = AXu$, so the nonhomogeneous system becomes $b = x' - Ax = AXu + Xu' - AXu = Xu'$, that is $u' = X^{-1}b$. Once we solve for u we have found a particular solution. This method is known as **variation of parameters**.

Use reduction of order and variation of parameters to solve $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{t^2} \\ 1 & \frac{1}{t} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 4 \\ 3\sqrt{t} \end{pmatrix}$ given that $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} \frac{1}{t} \\ -1 \end{pmatrix}$ is one solution to the associated homogeneous system.