

SYDE Advanced Math 2, Solutions to Assignment 1

1: (a) Verify that $y = x \sin x$ is a solution of the ODE $y(y'' + y) = x \sin 2x$.

Solution: We have $y' = \sin x + x \cos x$ and $y'' = \cos x + \cos x - x \sin x = 2 \cos x - x \sin x$ and so

$$\begin{aligned} y(y'' + y) &= (x \sin x)(2 \cos x - x \sin x + x \sin x) \\ &= (x \sin x)(2 \cos x) \\ &= x(2 \sin x \cos x) \\ &= x \sin 2x. \end{aligned}$$

(b) Find all the solutions of the form $y = ax^2 + bx + c$ to the ODE $(y'(x))^2 + 4x = 3y(x) + x^2 + 1$.

Solution: For $y = ax^2 + bx + c$ we have $y' = 2ax + b$, so

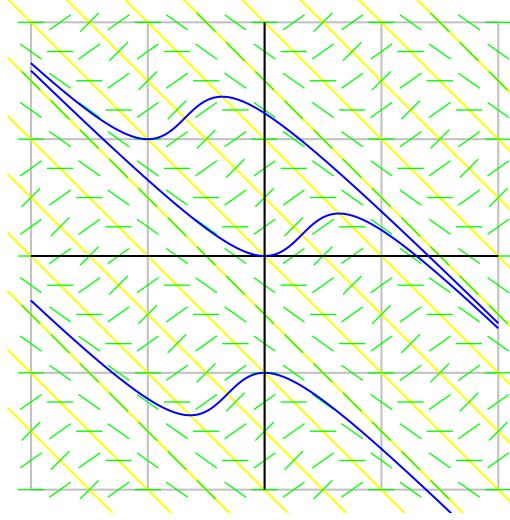
$$\begin{aligned} (y'(x))^2 + 4x &= 3y(x) + x^2 + 1 \iff (y'(x))^2 + 4x - 3y(x) - x^2 - 1 = 0 \\ &\iff (2ax + b)^2 + 4x - 3(ax^2 + bx + c) - x^2 - 1 = 0 \\ &\iff (4a^2 - 3a - 1)x^2 + (4ab + 4 - 3b)x + (b^2 - 3c - 1) = 0 \\ &\iff 4a^2 - 3a - 1 = 0, \quad 4ab + 4 = 3b, \quad \text{and } b^2 = 3c + 1 \end{aligned}$$

From $4a^2 - 3a - 1 = 0$ we get $(4a + 1)(a - 1) = 0$ and so $a = -\frac{1}{4}$ or $a = 1$. When $a = -\frac{1}{4}$, the equation $4ab + 4 = 3b$ gives $-1 + 4 = 3b$ so $b = 1$, and then the equation $b^2 = 3c + 1$ gives $1 = 3c + 1$ so $c = 0$. When $a = 1$, $4ab + 4 = 3b$ gives $4b + 4 = 3b$ so $b = -4$ and then $b^2 = 3c + 1$ gives $16 = 3c + 1$ so $c = 5$. Thus there are two solutions, and they are $y = -\frac{1}{4}x^2 + x$ and $y = x^2 - 4x + 5$.

2: Consider the IVP $y' = \sin(\pi(x+y))$ with $y(-1) = 1$.

(a) Sketch the direction field for the given ODE for $-2 \leq x \leq 2$ and $-2 \leq y \leq 2$ and, on the same grid, sketch the solution curves which pass through each of the points $(-1, 1)$, $(0, 0)$ and $(0, -1)$.

Solution: We have $y' = 0$ when $\sin(\pi(x+y)) = 0$, that is when $\pi(x+y) = k\pi$ for some integer k , or equivalently when $x+y = k$ for some integer k . Similarly, we have $y' = 1$ when $x+y = k + \frac{1}{2}$, and $y' = -1$ when $x+y = k - \frac{1}{2}$, and $y' = \frac{1}{2}$ when $x+y = k + \frac{5}{6}$ or $k + \frac{5}{6}$, and $y' = -\frac{1}{2}$ when $x+y = k - \frac{1}{6}$ or $k - \frac{5}{6}$. The isoclines $y' = 0, \pm 1$ are shown in yellow, the direction field is shown in green, and the solution curves are shown in blue.



(b) Using a calculator, apply Euler's method with step size $\Delta x = 0.2$ to approximate the value of $f(0)$ where $y = f(x)$ is the solution to the given IVP.

Solution: We let $x_0 = -1$ and $y_0 = 1$, then for $k \geq 0$ we set $x_{k+1} = x_k + \Delta x$ and $y_{k+1} = y_k + F(x_k, y_k)\Delta x$, where $F(x, y) = \sin(\pi(x+y))$. We make a table listing the values of x_k , y_k and $F(x_k, y_k)$.

k	x_k	y_k	$F(x_k, y_k) = x_k - y_k^2$
0	-1	1	0
1	-0.8	1	0.5877852524
2	-0.6	1.1117557050	0.9984792328
3	-0.4	1.317252897	0.2570396643
4	-0.2	1.368660830	-0.5054156715
5	0	1.267577696	

Thus we have $f(0) \cong y_5 \cong 1.3$.

3: Solve each of the following ODEs.

(a) $x y' + y = \sqrt{x}$.

Solution: This DE is linear since we can write it in the form $y' + \frac{1}{x}y = x^{-1/2}$. An integrating factor is $\lambda = e^{\int \frac{1}{x} dx} = e^{\ln x} = x$ and so the solution is $y = \frac{1}{x} \int x \cdot x^{-1/2} dx = \frac{1}{x} \int x^{1/2} dx = \frac{1}{x} \left(\frac{2}{3} x^{3/2} + c \right) = \frac{2}{3} \sqrt{x} + \frac{c}{x}$.

(b) $\sqrt{x} y' = 1 + y^2$.

Solution: This DE is separable. We can write it as $\frac{dy}{1+y^2} = x^{-1/2} dx$ and then integrate both sides to get $\tan^{-1} y = 2x^{1/2} + c$, that is $y = \tan(2\sqrt{x} + c)$.

(c) $y' = x(y^2 - 1)$.

Solution: This DE is separable since (when $y \neq \pm 1$) we can write it as $\frac{y'}{y^2 - 1} = x$. Integrate both sides, noting that $\frac{1}{y^2 - 1} = \frac{\frac{1}{2}}{y-1} - \frac{\frac{1}{2}}{y+1}$, to get

$$\begin{aligned} \frac{1}{2} \ln \left| \frac{y-1}{y+1} \right| &= \frac{1}{2} x^2 + c, \text{ where } c \in \mathbb{R} \\ \ln \left| \frac{y-1}{y+1} \right| &= x^2 + 2c \\ \left| \frac{y-1}{y+1} \right| &= e^{x^2+2c} = e^{2c} e^{x^2} \\ \frac{y-1}{y+1} &= \pm e^{2c} e^{x^2} = a e^{x^2}, \text{ where } a = \pm e^{2c} \\ y-1 &= y a e^{x^2} + a e^{x^2} \\ y(1 - a e^{x^2}) &= 1 + a e^{x^2} \\ y &= \frac{1 + a e^{x^2}}{1 - a e^{x^2}}. \end{aligned}$$

Taking $a = 0$ gives the solution $y = 1$, so the general solution is $y = -1$ or $y = \frac{1 + a e^{x^2}}{1 - a e^{x^2}}$ with $a \in \mathbb{R}$.

4: Solve each of the following IVPs.

(a) $x y' = y^2 + y$ with $y(1) = 1$.

Solution: This DE is separable since we can write it as $\frac{y'}{y^2 + y} = \frac{1}{x}$. Integrate both sides, using partial fractions for the integral on the left, to get

$$\begin{aligned} \int \frac{1}{y} - \frac{1}{y+1} dy &= \int \frac{1}{x} dx \\ \ln y - \ln(y+1) &= \ln x + c \\ \ln \left(\frac{y}{y+1} \right) &= \ln x + c \\ \frac{y}{y+1} &= e^{\ln x + c} = a x, \end{aligned}$$

where $a = \ln c$. Put in $y(1) = 1$ to get $\frac{1}{2}$, so we have $\frac{y}{y+1} = \frac{x}{2}$ so $2y = x(y+1) = xy + x$, that is $y(2-x) = x$, so the solution to the IVP is $y = \frac{x}{2-x}$ for $x < 2$.

(b) $x y' + 2y = \ln x$ with $y(1) = 0$.

Solution: This DE is linear since we can write it as $y' + \frac{2}{x} y = \frac{1}{x} \ln x$. An integrating factor is given by $\lambda = e^{\int \frac{2}{x} dx} = e^{2 \ln x} = x^2$ and so the solution is $y = \frac{1}{x^2} \int x \ln x dx$. We integrate by parts using $u = \ln x$ and $dv = x dx$ so that $du = \frac{1}{x} dx$ and $v = \frac{1}{2} x^2$ to get

$$\begin{aligned} y &= \frac{1}{x^2} \int x \ln x dx \\ &= \frac{1}{x^2} \left(\frac{1}{2} x^2 \ln x - \int \frac{1}{2} x dx \right) \\ &= \frac{1}{x^2} \left(\frac{1}{2} x^2 \ln x - \frac{1}{4} x^2 + c \right) \\ &= \frac{c}{x^2} + \frac{1}{2} \ln x - \frac{1}{4} \end{aligned}$$

Put in $y(1) = 0$ to get $0 = c - \frac{1}{4}$, so we have $c = \frac{1}{4}$ and the solution to the IVP is $y = \frac{1}{4} \left(\frac{1}{x^2} + 2 \ln x - 1 \right)$ for $x > 0$.

(c) $y' + xy = x^3$ with $y(0) = 1$.

Solution: This DE is linear. An integrating factor is $\lambda = e^{\int x dx} = e^{\frac{1}{2}x^2}$. The solution to the DE is

$$y = e^{-\frac{1}{2}x^2} \int x^3 e^{\frac{1}{2}x^2} dx.$$

Integrate by parts using $u = x^2$, $du = 2x dx$, $v = e^{\frac{1}{2}x^2}$, $dv = xe^{\frac{1}{2}x^2}$ to get

$$y = e^{-\frac{1}{2}x^2} \left(x^2 e^{\frac{1}{2}x^2} - \int 2x e^{\frac{1}{2}x^2} dx \right) = e^{-\frac{1}{2}x^2} \left(x^2 e^{\frac{1}{2}x^2} - 2e^{\frac{1}{2}x^2} + c \right) = x^2 - 2 + ce^{-\frac{1}{2}x^2}.$$

To get $y(0) = 1$ we need $-2 + c = 1$ so $c = 3$. Thus the solution to the IVP is

$$y = x^2 - 2 + 3e^{-\frac{1}{2}x^2} \text{ for all } x.$$

5: Solve each of the following IVPs.

(a) $y' = \frac{x+2}{y-1}$ with $y(1) = -2$.

Solution: This DE is separable since we can write it as $(y-1)y' = (x+2)$. Integrate both sides to get

$$\begin{aligned} \frac{1}{2}y^2 - y &= \frac{1}{2}x^2 + 2x + c \\ y^2 - 2y &= x^2 + 4x + 2c \\ (y-1)^2 - 1 &= x^2 + 4x + 2c \\ y &= -1 \pm \sqrt{x^2 + 4x + 2c + 1}. \end{aligned}$$

To get $y(1) = -2$ we need $1 \pm \sqrt{6+2c} = -2$ so we must use the - sign and we must take $c = \frac{3}{2}$. Thus the solution to the IVP is

$$y = 1 - \sqrt{x^2 + 4x + 4} = 1 - \sqrt{(x+2)^2} = 1 - (x+2) = -(x+1) \text{ for } x > -2.$$

(b) $y' + y \tan x = \sin^2 x$ with $y(0) = 1$.

Solution: This DE is linear. An integrating factor is $\lambda = e^{\int \tan x \, dx} = e^{\ln(\sec x)} = \sec x = \frac{1}{\cos x}$ and the solution to the DE is

$$\begin{aligned} y &= \cos x \int \frac{\sin^2 x}{\cos x} \, dx = \cos x \int \frac{1 - \cos^2 x}{\cos x} \, dx = \cos x \int \sec x - \cos x \, dx \\ &= \cos x \left(\ln |\sec x + \tan x| - \sin x + c \right). \end{aligned}$$

To get $y(0) = 1$ we need $c = 1$, so the solution to the IVP is

$$y = \cos x \left(\ln |\sec x + \tan x| - \sin x + 1 \right) \text{ for } -\frac{\pi}{2} < x < \frac{\pi}{2}.$$

(c) $y' = \frac{y}{x+y^2}$ with $y(3) = 1$.

Solution: We interchange the rolls of x and y , and solve this DE for $x = x(y)$. We have

$$x'(y) = \frac{1}{y'(x)} = \frac{x+y^2}{y}$$

This DE is linear since we can write it as $x' - \frac{1}{y}x = y$. An integrating factor is $\lambda = e^{\int -\frac{1}{y} dy} = e^{-\ln y} = \frac{1}{y}$ and the solution is

$$x = y \int 1 \, dy = y(y+c) \text{ for } y > 0.$$

To get $y(3) = 1$ (that is to get $x(1) = 3$) we need $2 = 1 + c$ so $c = 2$, and so the solution is

$$x = y(y+2) = (y+1)^2 - 1.$$

Solve this for $y = y(x)$ to get $y = -1 \pm \sqrt{x+1}$. Note that to satisfy $y(3) = 1$ we need to use the + sign, so

$$y = -1 + \sqrt{x+1} \text{ for } x > 0.$$

6: A **Bernoulli** DE is a DE which can be written in the form $y' + py = qy^n$ for some continuous functions p and q and some integer n . The substitution $u = y^{1-n}$ can be used to transform the above Bernoulli DE for $y = y(x)$ into the linear DE $u' + p(1-n)u = q(1-n)$ for $u = u(x)$.

(a) Solve the IVP $y' + y = xy^3$, with $y(0) = 2$.

Solution: Let $u = y^{-2}$ so $u' = -2y^{-3}y'$, and multiply both sides of the DE $y' + y = xy^3$ by $-2y^{-3}$ to get $-2y^{-3}y' - 2y^{-2} = -2x$, that is

$$u' - 2u = -2x.$$

This is a linear DE for $u = u(x)$. An integrating factor is $I = e^{\int -2dx} = e^{-2x}$, and the general solution is $u = e^{2x} \int -2xe^{-2x} dx$. Integrate by parts using $u = x$, $du = dx$, $v = e^{-2x}$ and $dv = -2e^{-2x} dx$ to get

$$u = e^{2x} \left(x e^{-2x} - \int e^{-2x} dx \right) = e^{2x} \left(x e^{-2x} + \frac{1}{2} e^{-2x} + c \right) = x + \frac{1}{2} + c e^{2x},$$

that is $y^{-2} = x + \frac{1}{2} + c e^{2x}$. To get $y(0) = 2$ we need $\frac{1}{4} = \frac{1}{2} + c$ so $c = -\frac{1}{4}$ and so we have

$$y^{-2} = x + \frac{1}{2} - \frac{1}{4} e^{2x} \implies y = \left(x + \frac{1}{2} - \frac{1}{4} e^{2x} \right)^{-1/2} = \frac{2}{\sqrt{4x + 2 - e^{2x}}},$$

for those values of x for which $4x + 2 > e^{2x}$.

(b) Solve the IVP $xy' + y^2 = 1$ with $y(1) = 2$.

Solution: This is a Bernoulli DE since we can write it as $y' + \frac{1}{x}y = \frac{1}{x}y^{-1}$. We let $u = y^2$ so $u' = 2y y'$. Multiply both sides of the DE by $2y$ to get $2y y' + \frac{2}{x}y^2 = \frac{2}{x}$, that is

$$u' + \frac{2}{x}u = \frac{2}{x}.$$

This DE is linear. An integrating factor is $\lambda = e^{\int \frac{2}{x}dx} = e^{2\ln x} = x^2$, and the solution to the DE is

$$u = x^{-2} \int 2x dx = x^{-2}(x^2 + c) = 1 + \frac{c}{x^2},$$

that is $y^2 = 1 + \frac{c}{x^2}$, so

$$y = \pm \sqrt{1 + \frac{c}{x^2}}.$$

To get $y(1) = 2$ we need $\pm\sqrt{1+c} = 2$, so we must use the + sign and take $c = 3$. Thus

$$y = \sqrt{1 + \frac{3}{x^2}} = \frac{\sqrt{x^2 + 3}}{x} \text{ for } x > 0.$$

7: A **homogeneous** first order DE is a DE which can be written in the form $y' = F\left(\frac{y}{x}\right)$ for some continuous function F . The substitution $u = \frac{y}{x}$ can be used to transform the above homogeneous DE for $y = y(x)$ into the separable DE $xu' = F(u) - u$ for $u = u(x)$.

(a) Solve the IVP $y' = \frac{x^2 + 3y^2}{2xy}$ with $y(1) = 2$.

Solution: This DE is homogeneous since we can write it as $y' = \frac{1 + 3\left(\frac{y}{x}\right)^2}{2\left(\frac{y}{x}\right)}$. Let $u = \frac{y}{x}$ so $y = xu$ and $y' = u + xu'$. Then we can write the DE as $u + xu' = \frac{1 + 3u^2}{2u}$, that is $xu' = \frac{1 + 3u^2}{2u} - u = \frac{1 + u^2}{2u}$. This is separable, as we can write it as $\frac{2u \, du}{1 + u^2} = \frac{dx}{x}$. Integrate both sides to get

$$\begin{aligned} \ln(1 + u^2) &= \ln|x| + c \implies 1 + u^2 = ax \quad (\text{where } a = \pm e^c) \implies u = \pm\sqrt{ax - 1} \\ \implies \frac{y}{x} &= \pm\sqrt{ax - 1} \implies y = \pm x\sqrt{ax - 1}. \end{aligned}$$

To get $y(1) = 2$, we need $2 = \pm\sqrt{a - 1}$, so we need to use the + sign and we need $a - 1 = 4$ so $a = 5$. Thus

$$y = x\sqrt{5x - 1} \text{ for } x > \frac{1}{5}.$$

(b) Solve the IVP $y' = \frac{y^2 + 2xy}{x^2}$ with $y(1) = 1$.

Solution: This DE is homogeneous since we can write it as $y' = \left(\frac{y}{x}\right)^2 + 2\left(\frac{y}{x}\right)$. Make the substitution $u = \frac{y}{x}$ so $y = xu$ and $y' = u + xy'$, then the DE becomes $u + xu' = u^2 + u$, that is $xu' = u^2 + 2u$. This new DE is separable since we can write it as $\frac{1}{u^2 + u} u' = \frac{1}{x}$. Integrate both sides (with respect to x) to get

$$\begin{aligned} \int \frac{du}{u^2 + u} &= \int \frac{dx}{x} \\ \ln \frac{u}{u + 1} &= \ln x + a \\ \frac{u}{u + 1} &= bx, \end{aligned}$$

where $b = e^a$. To get $y(1) = 1$, we put in $x = 1$ and $y = 1$ so $u = \frac{y}{x} = 1$ to get $\frac{1}{2} = b$, thus the solution is given by

$$\frac{u}{u + 1} = \frac{x}{2} \implies 2u = ux + x \implies (2 - x)u = x \implies u = \frac{x}{2 - x} \implies \frac{y}{x} = \frac{x}{2 - x} \implies y = \frac{x^2}{2 - x}$$

for $0 < x < 2$.