

1: Let $F(x, y) = \begin{pmatrix} f(x, y) \\ g(x, y) \end{pmatrix}$ where $u(x, y) = x^2 + y^2 - 5$ and $v(x, y) = x^3 + y^3 - 2$.

(a) Sketch the curves $f(x, y) = 0$ and $g(x, y) = 0$ on the same grid, and use your picture to approximate the coordinates of the points of intersection of the two curves (that is the points (x, y) such that $F(x, y) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$).

(b) Find a more accurate approximation for the coordinates of the lowest point of intersection as follows: Starting with $a_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, carry out two iterations of Newton's method. Calculate the first iteration to find $a_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ by hand, expressing x_1 and y_1 as fractions, then carry out the second iteration to find $a_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ with the help of a calculator (or computer).

2: (a) Show that when $n = 2$, the open Newton-Cotes rule is given by

$$I_2^O = \frac{b-a}{3} (2f(x_0) - f(x_1) + 2f(x_2)) , \text{ where } x_k = a + (k+1) \frac{b-a}{4}.$$

(b) Show that when $n = 4$, the closed Newton-Cotes rule is given by

$$I_4^C = \frac{b-a}{90} (7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4)) , \text{ where } x_k = a + k \frac{b-a}{4}.$$

3: (a) Show that when $n = 3$, the Gaussian quadrature rule on the interval $[-1, 1]$ is given by

$$\int_{-1}^1 f(x) dx \cong I_3^G = \frac{5}{9} f\left(-\frac{\sqrt{3}}{\sqrt{5}}\right) + \frac{8}{9} f(0) + \frac{5}{9} f\left(\frac{\sqrt{3}}{\sqrt{5}}\right).$$

(b) Find the Gaussian quadrature rule, for $n = 3$, on the interval $[a, b]$.

4: Approximate the value of $\ln 2 = \int_1^2 \frac{1}{x} dx$ using the open Newton-Cotes rule for $n = 2$, using the closed Newton-Cotes rule for $n = 4$, and using the Gaussian quadrature rule for $n = 3$.

5: The **third order Taylor method** for approximating the solution to $y' = f(x, y)$ with $y(x_0) = y_0$ is performed by choosing a step size $h = \Delta x$, starting with (x_0, y_0) and then, after having found (x_k, y_k) , letting $x_{k+1} = x_k + h$ and letting y_{k+1} be given by

$$y_{k+1} = y(x_k) + y'(x_k)h + \frac{1}{2}y''(x_k)h^2 + \frac{1}{6}y'''(x_k)h^3$$

where $y = y(x)$ is the solution to the given DE with $y(x_k) = y_k$.

(a) Recall that when $y = y(x)$ is a solution to the DE $y' = f(x, y)$ we have $y' = f$ and $y'' = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} f$. Show that we also have

$$y''' = \frac{\partial^2 f}{\partial x^2} + 2 \frac{\partial^2 f}{\partial x \partial y} f + \frac{\partial^2 f}{\partial y^2} f^2 + \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} + \left(\frac{\partial f}{\partial y}\right)^2 f.$$

(b) Apply the third-order Taylor method using the step size $h = \frac{1}{2}$ to approximate the value of $y(2)$ when $y = y(x)$ is the solution to the IVP given by $y' = 1 + \frac{y}{x}$ with $y(1) = 1$.

6: Consider the IVP given by $y' = \frac{x}{y}$ with $y(0) = 1$. Find the exact solution $y = y(x)$ and the exact value of $y(1)$.

Then, approximate the value of $y(1)$ several times: use Euler's method with step size $h = \frac{1}{4}$, use the second-order Taylor method with $h = \frac{1}{2}$, use Heun's method with $h = \frac{1}{2}$, and use RK4 with $h = 1$.