SYDE Advanced Math 2, Solutions to Assignment 11

: The following ODEs are examples of Sturm-Liouville boundary value problems involving a parameter k.
In each case, non-zero solutions only occur for certain values of k, which are called eigenvalues and the
corresponding solutions are called eigenfunctions.

(a) Find the possible values of k € R and the non-zero solutions the ODE u” = ku for u = u(x) satisfying
the boundary conditions «'(0) = 0 and u(1) = 0.

Solution: When k = 0, the DE u” = ku becomes u” = 0, which has solutions u(z) = ax + b with v/(z) = a.
To get u'(0) = 0 we need a = 0 so that u(x) = b, and then to get u(1l) = 0 we need b = 0, so we only
obtain the zero solution. Suppose k > 0 with k& = ¢2, the DE becomes u” — ¢2u = 0, which has solutions
u(x) = ae’ + be~?* with u'(x) = cae® — obe®. To get ¢'(0) = 0 we need oca — ob = 0, that is ca = ob,
and hence a = b (since o > 0). To get u(1) = 0 we need 0 = ae? +be™ 7 = ae’ +ae 7 = a(e’ + e 7) and
hence a = 0 (since e’ + e~? > 0). Thus when k£ > 0 we only obtain the zero solution. Suppose that k < 0,
say k = —0? with 0 > 0. The DE becomes u” + o?u = 0 which has solutions u(x) = asinox + bcos ox with
u'(z) = oacosox — obsinozx. To get u/(0) = 0 we need a = 0 so that u(z) = beosox. To get u(l) =0
we need bcoso = 0. When b = 0 we obtain the zero-solution, so for a non-zero solution we need coso = 0
which occurs when o = § + nm for some 0 < n € Z. Thus the values of k for which a non-zero solution
exists are the values k = —0? = —(5+ nm)? with 0 < n € Z, and the corresponding solutions are given by
u(x) = up(z) = by cosox = by, cos ((3 + nm)z).

(b) Find the possible values of k¥ € R and the non-zero solutions to the ODE x?u” + xu’ + ku = 0 satisfying
the boundary conditions u(1) = 0 and u(4) = 0.

Solution: This DE is a Cauchy-Euler equation. We found the solutions to Cauchy-Euler equations in Question
2 on Problem Set 4. To solve the DE z?u” 4+ 2zu’ 4+ ku = 0, we let y = 2" and put this in the DE to get
r(r—1)+r+k =0, that is r2 + k = 0. When k = 0 we find that 7 = 0 (a repeated real root) so the
solutions to the DE are given by u(x) = a+blnx. To get u(1) = 0 we need a = 0 so that u(z) = blnx, then
to get u(4) = 0 we need b = 0 giving the zero solution. When k < 0, say k = —o? with o > 0, the equation
r2+k = 0 becomes r2 — o2 = 0 giving r = +0, so the solutions to the DE are given by u(z) = az® +bx=°. To
get u(l) =0 we need a+b=0s0b=—aand u(z) =a(x? —2~7). To get u(4) = 0 we need a(4° —477) =0
and hence a = 0 (because 4° > 1 and 477 < 1 so that 42 — 477 > 0), so we only obtain the zero solution.
Suppose that k > 0, say k = 02.The equation r? + k = 0 becomes r? + 02 = 0 so that r = +0i, and the
solutions to the DE are given by u(z) = acos(olnzx) + bsin(clnz). To get u(l) = 0 we need a = 0 so
that u(z) = bsin(olnz). To get u(4) = 0, for a non-zero solution we need sin(oIln4) = 0, so we must have
oln4 = nm for some positive integer n. Thus the values of k for which there exists a non-zero solution are

k=02 = (£%)? with 0 < n € Z, and the corresponding solutions are u(z) = u, (x) = by, sin ({5 Inz).



2: Solve the wave equation ?)tg = 48 u’ for u = u(z,t) with 0 < 2z <4 and ¢t > 0, satisfying the fixed endpoint
condition u(0,t) = u(4,t) = 0 for all t > 0 and the initial conditions u(x,0) = 0 and %(m,()) = 2sin 7F for
0<x<4.

Solution: We know (from Example 4.10 in the Lecture Notes) that the solution to the wave equation

%i;‘ c? g;g with «(0,t) = u(¢,t) = 0 for ¢ > 0 and u(z,0) = 0 and a“ #(2,0) = g(t) for 0 <z < £ is given

by u(x,t) = Z dy sin (£2%¢) sin (“z) where the constants €2d,, are the Fourier coefficients for the odd
n=1

2¢-periodic function which is equal to g(z) for 0 < x < £. In this problem, we take ¢ = 2 and ¢ = 4 and
g(x) = 2sin (gx) Note that g(z) is already in the form of a trigonometric polynomial for an 8-periodic

function, and we have g(z) = Z by sin(% ) with Fourier coefficients by = 2 and b,, = 0 for n > 2. To get

c””dn =b, withc=2 and ¢ = 4 we need d,, = —bn, so dy = ; and d,, = 0 for n > 2. The solution is

u(z,t) = Z_:l dy sin (27¢) sin (% 2) = 2 sin (5t) sin (Sz).

: Solve the heat equation a—;‘ = 28 % for u = u(z,t) with 0 < 2 < ¢ and t > 0 satisfying the fixed endpoint

temperature condition u(0,t) = and u(f,t) = 0 for all ¢ > 0 and the initial condition u(z,0) = f(x) for

allO<m<€wheref( )1sg1venbyf(x):0for0§x< 10, f(z) =1for 2 <z < 3 and f(z) = 0 for
3L <o <0 (with f(£) = f(3) = % so that f(z) is equal to the sum of its Fourier series).

Solution: We know (from Exercise 4.13 in the Lecture Notes) that the solution to the heat equation 2% =

ot
c? gi’; satisfying the fixed endpoint temperature conditions w(0,t) = u(¢,t) = 0 for ¢ > 0 and the initial
condition u(z,0) = f(z) for 0 < z < £ is given by u(z,t) = > 0° bpe (/D% cog (2rz) where the b, are
the Fourier coefficients of the odd 2¢-periodic function which is equal to f(z) for 0 < x < ¢. We need

¢ 30/4
b, = %/ f(x)sin (“Fx) do = %/ sin (“Fx) x = %[— (-£) cos (%x)rwl = -2 (cos T — cos 31T,
0 nm nm

0/4 0/4

7»20:(7\2[,0 — 5= 1—i 07§’17...)

and (cos 32”) n>0 = ( , f ,0 V2ooq V2 0, _V2 . -), and subtracting the second from the first gives

We have two sequences, both of period 8, given by (cos %)

’ 92 ’ 9 2 7
(COST — cos ?’CLT”)TDO = (O7 Vv2,0,-v/2,0,-+/2,0,/2,0, - - ) Thus the coefficients are given by b, = 0
when n is even, and b, = % when n = +1 + 8k, and b, = Qn‘—wf when n = +3 + 8k, which we can write
as b, = (—1)»~D(=7)/8 wwhen n is odd. The solution is

(n— 1)(n 7)

u(z,t) = Z (-1) 2\f (CMM) * cos ("7”:0)



4: Solve the heat equation % = 02% for u = u(x,t) with 0 < 2 < £ and ¢ > 0 satisfying the insulated ends

condition 2%(0,¢) = 0 and $%(¢,t) = 0 for all t > 0 and the initial condition u(z,0) = f(z) for all 0 < z < ¢
where f(z) is given by f(x)=1f0r0<x<%fand f(x):3f0r—<x<£(w1th f(0) = f(23e) f(1)=2).

Solution: We know (from Exercise 4.14) that the solution is given by u(z,t) = > "7, dpe= (/0% cog (% )
where the a,, are the Fourier coefficients of the even 2¢-periodic function which is equal to f(x) for 0 < x < /.

We need
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= ——sin = = ¢ =2 ifn =1+ 3k
203 if =24 3k
The solution is
oo T 82
u(e, 1) = § = 3 5k sin 257 <7 cos (172)
n=
0)? 0)?
=3- ¥ %e(cm/)tcos("tfﬂx)—k > %e(cm/)tcos(%x).

n=1+3k n=2+3k

: Solve Dirichlet’s problem, that is solve Laplace’s equation 2 axz + ayQ = 0, for u = u(x,y) on the square
0 <z <1,0<y <1 satisfying the boundary conditions u(z,0) = x and u(xz,1) = z for 0 < z < 1, and
u(0,y) = sinmy and u(l,y) =1 —sinwy for 0 <y < 1.

Solution: Note that v = v(x,y) = = satisfies Laplace’s equation with v(x,0) = v(1,0) = z and v(0,y) = 0
and v(l,y) = 1. If u = u(x,y) is the desired solution and w = w — v, then we will have w(z,0) = 0,

w(z,1) = 0, w(0,y) = sinwy and w(l,y) = —sinmy. Following the method of Example 4.15, we find two
functions w = ws(z,y) and w = wy(x,y) where ws(0,y) = f3(y) = sinwy and is zero on the other 3 edges
of the square, and w4 (1,y) = f4(y) = —sin7y and iz zero on the other 3 edges of the square. As shown in

o0
Example 4.15, the function ws(x, y) is given by ws(x,y) = > ¢, sinh(nw(1—2z)) sin(nmy) where the constants
n=1
¢, sinh(nm) are the Fourier coefficients of the odd 2-periodic function which is equal to f3(y) = sinwy. Note
that fs3(y) is already in the form of a trigonometric polynomlal so we see that its Fourier coefficients are

given by by =1 and b, = 0 for n # 1, so we have ¢; = and ¢, = 0 for n # 1. Thus

5mh7r
w(x,y) = o+ sinh(m(1—x)) sin(ry).

Using a similar (but slightly easier) argument to the argument used in Example 4.15, or (more easily) by

using symmetry (by replacing 1 — z by « and noting that f4(y) = —f5(y)) we see that

wy(z,y) = — 75— sinh(7x) sin(my).

Thus the solution u = u(x,y) to the given problem is

u(z,y) = v(z,y) + ws(z,y) + wa(z,y) = 2 + —— (sinh(r(1—=2)) — sinh(7z)) sin(ry).
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6: Consider Laplace’s equation % + ng =0.

(a) Change to polar coordinates by letting = rcosf and y = rsinf. Use the Chain Rule to calculate
9u and 2% and 24 and 91 and hence show that Laplace’s equation, for u = u(r,0) = u(x(r,0),y(r,0)),

or or Hr2 927
becomes , X
o°u 1 0u 1 0°u __
oz T o T g =0
Solution: By the Chain Rule, we have
Ou __ Ou Oz Ou Oy __
or — owor T oyor — C059+ , sind
Pu _ (9*u dx 3%u 6y 8 u Oz 8%u 0y
or2 (81:2 or + Bway Br) cosf + (&cé)y or + dy? 67") sin ¢
= ( L cosf + 2 8181} sm@) cos@—i—(awy CObH—I— bln@) sin 0
_ 2 8 u 8 u 9%u
= cos” 0 5.7 + sin® 0 5.7 +2sinf cos 6 520y
and
Ou __ Ou Oz Oudy _ _ Ou du
80_8z60+8y80 — 3% rsinf + rcosﬂ
%u __ _ 9%y Oz _ 9%u Oy 6u 8%u Oz y ou
902 — ( 922 96 azay %)’"Sln oz Tcost + (azay 90 + ('T)TCOS oy rsin 6
_ (d%u _ _ 8%u _ Ou
= (8302 rsinf Bway rcosH)rsmG r0059+ ( D2y rsm@—l— o0 TCOSG)TCOSG a L rgin 6
_ 202 0% 29 0%u _ : 2u du du
= r®sin 983:2 + 72 cos Hawy 2rs1n000896,,8y 7‘cos06,I rsm&ay
so that
%u 10u 1 9%u _ d%u d%u
a2 tror Te T o ooy

b) Find a solution v = u(x,y) to Laplace’s equation iﬁ + i’; = 0 in the annulus given by 1 < 22 +y2 < 2
ox Jy

satisfying the boundary conditions u(z,y) = 6 when 22 + 3? = 1 and u(z,y) = 10 when 2?2 + y? = 2.

Solution: By symmetry, we look for a solution of the form u = u(r) to Laplace’s equation in polar coordinates
with u(1) = 6 and u(v/2) = 10. When u = u(r), Laplace’s equation in polar coordinates becomes u”+2u' = 0.
Letting v = v(r) = «/(r) and v'(r) = u”(r), the DE becomes v/ + 1v = 0, which is linear. An integrating
factor is A = ef rdr _ oy =7, and the solution is given by v(r) = 1 deT = &, that is ' = 2. Integrate
to get u = alnr +b. To get u(l) = 6 we need b = 6 so that u(r ) = 6+alnx. Then to get u(v/2) = 10 we
need 6 + aln /2 = 10, so we must take a = # = 2 and the solution is u(r) = 6 + 2 Inr. In Cartesian

coordinates, this can be written as u(z,y) = 6 + 55 In /22 + 32 = 6 + 5 In(2? + y?) = 6+ 4log, (22 + y?).



