
SYDE Advanced Math 2, Solutions to Assignment 11

1: The following ODEs are examples of Sturm-Liouville boundary value problems involving a parameter k.
In each case, non-zero solutions only occur for certain values of k, which are called eigenvalues and the
corresponding solutions are called eigenfunctions.

(a) Find the possible values of k ∈ R and the non-zero solutions the ODE u′′ = ku for u = u(x) satisfying
the boundary conditions u′(0) = 0 and u(1) = 0.

Solution: When k = 0, the DE u′′ = ku becomes u′′ = 0, which has solutions u(x) = ax+ b with u′(x) = a.
To get u′(0) = 0 we need a = 0 so that u(x) = b, and then to get u(1) = 0 we need b = 0, so we only
obtain the zero solution. Suppose k > 0 with k = σ2, the DE becomes u′′ − σ2u = 0, which has solutions
u(x) = aeσx + be−σx with u′(x) = σaeσx − σbeσx. To get σ′(0) = 0 we need σa − σb = 0, that is σa = σb,
and hence a = b (since σ > 0). To get u(1) = 0 we need 0 = aeσ + be−σ = aeσ + ae−σ = a(eσ + e−σ) and
hence a = 0 (since eσ + e−σ > 0). Thus when k > 0 we only obtain the zero solution. Suppose that k < 0,
say k = −σ2 with σ > 0. The DE becomes u′′ + σ2u = 0 which has solutions u(x) = a sinσx+ b cosσx with
u′(x) = σa cosσx − σb sinσx. To get u′(0) = 0 we need a = 0 so that u(x) = b cosσx. To get u(1) = 0
we need b cosσ = 0. When b = 0 we obtain the zero-solution, so for a non-zero solution we need cosσ = 0
which occurs when σ = π

2 + nπ for some 0 ≤ n ∈ Z. Thus the values of k for which a non-zero solution
exists are the values k = −σ2 = −(π2 + nπ)2 with 0 ≤ n ∈ Z, and the corresponding solutions are given by
u(x) = un(x) = bn cosσx = bn cos

(
(π2 + nπ)x

)
.

(b) Find the possible values of k ∈ R and the non-zero solutions to the ODE x2u′′ + xu′ + ku = 0 satisfying
the boundary conditions u(1) = 0 and u(4) = 0.

Solution: This DE is a Cauchy-Euler equation. We found the solutions to Cauchy-Euler equations in Question
2 on Problem Set 4. To solve the DE x2u′′ + xu′ + ku = 0, we let y = xr and put this in the DE to get
r(r − 1) + r + k = 0, that is r2 + k = 0. When k = 0 we find that r = 0 (a repeated real root) so the
solutions to the DE are given by u(x) = a+ b lnx. To get u(1) = 0 we need a = 0 so that u(x) = b lnx, then
to get u(4) = 0 we need b = 0 giving the zero solution. When k < 0, say k = −σ2 with σ > 0, the equation
r2+k = 0 becomes r2−σ2 = 0 giving r = ±σ, so the solutions to the DE are given by u(x) = axσ+bx−σ. To
get u(1) = 0 we need a+ b = 0 so b = −a and u(x) = a(xσ−x−σ). To get u(4) = 0 we need a(4σ− 4−σ) = 0
and hence a = 0 (because 4σ > 1 and 4−σ < 1 so that 4σ − 4−σ > 0), so we only obtain the zero solution.
Suppose that k > 0, say k = σ2.The equation r2 + k = 0 becomes r2 + σ2 = 0 so that r = ±σi, and the
solutions to the DE are given by u(x) = a cos(σ lnx) + b sin(σ lnx). To get u(1) = 0 we need a = 0 so
that u(x) = b sin(σ lnx). To get u(4) = 0, for a non-zero solution we need sin(σ ln 4) = 0, so we must have
σ ln 4 = nπ for some positive integer n. Thus the values of k for which there exists a non-zero solution are
k = σ2 = ( nπln 4 )2 with 0 < n ∈ Z, and the corresponding solutions are u(x) = un(x) = bn sin

(
nπ
ln 4 lnx

)
.



2: Solve the wave equation ∂2u
∂t2 = 4∂

2u
∂x

2
for u = u(x, t) with 0 ≤ x ≤ 4 and t ≥ 0, satisfying the fixed endpoint

condition u(0, t) = u(4, t) = 0 for all t ≥ 0 and the initial conditions u(x, 0) = 0 and ∂u
∂t (x, 0) = 2 sin πx

4 for
0 ≤ x ≤ 4.

Solution: We know (from Example 4.10 in the Lecture Notes) that the solution to the wave equation
∂2u
∂t2 = c2 ∂

2u
∂x2 with u(0, t) = u(`, t) = 0 for t ≥ 0 and u(x, 0) = 0 and ∂u

∂t (x, 0) = g(t) for 0 ≤ x ≤ ` is given

by u(x, t) =
∞∑
n=1

dn sin
(
cnπ
` t
)

sin
(
nπ
` x
)

where the constants cnπ
` dn are the Fourier coefficients for the odd

2`-periodic function which is equal to g(x) for 0 ≤ x ≤ `. In this problem, we take c = 2 and ` = 4 and
g(x) = 2 sin

(
π
4x
)
. Note that g(x) is already in the form of a trigonometric polynomial for an 8-periodic

function, and we have g(x) =
∞∑
n=1

bn sin(nπ4 x
)

with Fourier coefficients b1 = 2 and bn = 0 for n ≥ 2. To get

cnπ
` dn = bn with c = 2 and ` = 4, we need dn = 2

nπ bn, so d1 = 4
π and dn = 0 for n ≥ 2. The solution is

u(x, t) =
∞∑
n=1

dn sin
(
cnπ
` t
)

sin
(
nπ
` x
)

= 4
π sin

(
π
2 t
)

sin
(
π
4x
)
.

3: Solve the heat equation ∂u
∂t = c2 ∂

2u
∂x2 for u = u(x, t) with 0 ≤ x ≤ ` and t ≥ 0 satisfying the fixed endpoint

temperature condition u(0, t) = 0 and u(`, t) = 0 for all t ≥ 0 and the initial condition u(x, 0) = f(x) for
all 0 ≤ x ≤ ` where f(x) is given by f(x) = 0 for 0 ≤ x < 1

4`, f(x) = 1 for 1
4 < x < 3`

4 and f(x) = 0 for
3`
4 < x ≤ ` (with f

(
`
4

)
= f

(
3`
4

)
= 1

2 so that f(x) is equal to the sum of its Fourier series).

Solution: We know (from Exercise 4.13 in the Lecture Notes) that the solution to the heat equation ∂u
∂t =

c2 ∂
2u
∂x2 satisfying the fixed endpoint temperature conditions u(0, t) = u(`, t) = 0 for t ≥ 0 and the initial

condition u(x, 0) = f(x) for 0 ≤ x ≤ ` is given by u(x, t) =
∑∞
n=0 bne

−(cnπ/`)2t cos
(
nπ
` x
)

where the bn are
the Fourier coefficients of the odd 2`-periodic function which is equal to f(x) for 0 ≤ x ≤ `. We need

bn = 2
`

∫ `

0

f(x) sin
(
nπ
` x
)
dx = 2

`

∫ 3`/4

`/4

sin
(
nπ
` x
)
x = 2

`

[
−
(
`
nπ

)
cos
(
nπ
` x
)]3`/4
`/4

= 2
nπ

(
cos nπ4 − cos 3nπ

4

)
.

We have two sequences, both of period 8, given by
(

cos nπ4
)
n≥0 =

(
1,
√
2
2 , 0,−

√
2
2 ,−1,−

√
2
2 , 0,

√
2
2 , 1, · · ·

)
and

(
cos 3nπ

4

)
n≥0 =

(
1,−

√
2
2 , 0,

√
2
2 ,−1,

√
2
2 , 0,−

√
2
2 , 1, · · ·

)
, and subtracting the second from the first gives(

cos nπ4 − cos 3nπ
4

)
n≥0 =

(
0,
√

2, 0,−
√

2, 0,−
√

2, 0,
√

2, 0, · · ·
)
. Thus the coefficients are given by bn = 0

when n is even, and bn = 2
√
2

nπ when n = ±1 + 8k, and bn = − 2
√
2

nπ when n = ±3 + 8k, which we can write

as bn = (−1)(n−1)(n−7)/8 when n is odd. The solution is

u(x, t) =
∑
n odd

(−1)
(n−1)(n−7)

8 2
√
2

nπ e
(cnπ/`)2t

cos
(
nπ
` x
)
.



4: Solve the heat equation ∂u
∂t = c2 ∂

2u
∂x2 for u = u(x, t) with 0 ≤ x ≤ ` and t ≥ 0 satisfying the insulated ends

condition ∂u
∂x (0, t) = 0 and ∂u

∂x (`, t) = 0 for all t ≥ 0 and the initial condition u(x, 0) = f(x) for all 0 ≤ x ≤ `
where f(x) is given by f(x) = 1 for 0 < x < 2`

3 and f(x) = 3 for 2`
3 < x < ` (with f(0) = f( 2`

3 ) = f(1) = 2).

Solution: We know (from Exercise 4.14) that the solution is given by u(x, t) =
∑∞
n=0 dne

−(cnπ/`)2t cos
(
nπ
` x
)

where the an are the Fourier coefficients of the even 2`-periodic function which is equal to f(x) for 0 ≤ x ≤ `.
We need

a0 = 1
`

∫ `

x=0

f(x) dx = 1
`

(∫ 2`/3

0

1 dx+

∫ `

2`/3

3 dx
)

= 1
`

(
2`
3 + `

)
= 5

3

an = 2
`

∫ `

0

f(x) cos
(
nπ
` x
)
dx = 2

`

(∫ 2`/3

0

cos
(
nπ
` x
)
dx+

∫ `

2`/3

3 cos
(
nπ
` x
)
dx

)
= 2

`

([
`
nπ sin

(
nπ
` x
)]2`/3

0
+
[

3`
nπ sin

(
nπ
` x
)]`

2`/3

)
= 2

`

(
`
nπ sin 2nπ

3 −
3`
nπ sin 2nπ

3

)

= − 4
nπ sin 2nπ

3 =


0 if n = 0 + 3k

− 2
√
3

nπ if n = 1 + 3k

2
√
3

nπ if n = 2 + 3k

 .

The solution is

u(x, t) = 5
3 −

∞∑
n=0

4
nπ sin 2nπ

3 e
(cnπ/`)2t

cos
(
nπ
` x
)

= 5
3 −

∑
n=1+3k

2
√
3

nπ e
(cnπ/`)2t

cos
(
nπ
` x
)

+
∑

n=2+3k

2
√
3

nπ e
(cnπ/`)2t

cos
(
nπ
` x
)
.

5: Solve Dirichlet’s problem, that is solve Laplace’s equation ∂2u
∂x2 + ∂2u

∂y2 = 0, for u = u(x, y) on the square

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 satisfying the boundary conditions u(x, 0) = x and u(x, 1) = x for 0 ≤ x ≤ 1, and
u(0, y) = sinπy and u(1, y) = 1− sinπy for 0 ≤ y ≤ 1.

Solution: Note that v = v(x, y) = x satisfies Laplace’s equation with v(x, 0) = v(1, 0) = x and v(0, y) = 0
and v(1, y) = 1. If u = u(x, y) is the desired solution and w = u − v, then we will have w(x, 0) = 0,
w(x, 1) = 0, w(0, y) = sinπy and w(1, y) = − sinπy. Following the method of Example 4.15, we find two
functions w = w3(x, y) and w = w4(x, y) where w3(0, y) = f3(y) = sinπy and is zero on the other 3 edges
of the square, and w4(1, y) = f4(y) = − sinπy and iz zero on the other 3 edges of the square. As shown in

Example 4.15, the function w3(x, y) is given by w3(x, y) =
∞∑
n=1

cn sinh(nπ(1−x)) sin(nπy) where the constants

cn sinh(nπ) are the Fourier coefficients of the odd 2-periodic function which is equal to f3(y) = sinπy. Note
that f3(y) is already in the form of a trigonometric polynomial, so we see that its Fourier coefficients are
given by b1 = 1 and bn = 0 for n 6= 1, so we have c1 = 1

sinhπ and cn = 0 for n 6= 1. Thus

w3(x, y) = 1
sinhπ sinh(π(1−x)) sin(πy).

Using a similar (but slightly easier) argument to the argument used in Example 4.15, or (more easily) by
using symmetry (by replacing 1− x by x and noting that f4(y) = −f3(y)) we see that

w4(x, y) = − 1
sinhπ sinh(πx) sin(πy).

Thus the solution u = u(x, y) to the given problem is

u(x, y) = v(x, y) + w3(x, y) + w4(x, y) = x+ 1
sinhπ

(
sinh(π(1−x))− sinh(πx)

)
sin(πy).



6: Consider Laplace’s equation ∂2u
∂x2 + ∂2u

∂y2 = 0.

(a) Change to polar coordinates by letting x = r cos θ and y = r sin θ. Use the Chain Rule to calculate
∂u
∂r and ∂2u

∂r2 , and ∂u
∂θ and ∂2u

∂θ2 , and hence show that Laplace’s equation, for u = u(r, θ) = u(x(r, θ), y(r, θ)),
becomes

∂2u
∂r2 + 1

r
∂u
∂r + 1

r2
∂2u
∂θ2 = 0.

Solution: By the Chain Rule, we have

∂u
∂r = ∂u

∂x
∂x
∂r + ∂u

∂y
∂y
∂r = ∂u

∂x cos θ + ∂u
∂y sin θ

∂2u
∂r2 =

(
∂2u
∂x2

∂x
∂r + ∂2u

∂x∂y
∂y
∂r

)
cos θ +

(
∂2u
∂x∂y

∂x
∂r + ∂2u

∂y2
∂y
∂r

)
sin θ

=
(
∂2u
∂x2 cos θ + ∂2u

∂x∂y sin θ
)

cos θ +
(
∂2u
∂x∂y cos θ + ∂2u

∂y2 sin θ
)

sin θ

= cos2 θ ∂
2u
∂x2 + sin2 θ ∂

2u
∂y2 + 2 sin θ cos θ ∂2u

∂x∂y

and
∂u
∂θ = ∂u

∂x
∂x
∂θ + ∂u

∂y
∂y
∂θ = −∂u∂x r sin θ + ∂u

∂y r cos θ

∂2u
∂θ2 =

(
− ∂2u

∂x2
∂x
∂θ −

∂2u
∂x∂y

∂y
∂θ

)
r sin θ − ∂u

∂x r cos θ +
(
∂2u
∂x∂y

∂x
∂θ + ∂2u

∂y2
∂y
∂θ

)
r cos θ − ∂u

∂y r sin θ

=
(
∂2u
∂x2 r sin θ − ∂2u

∂x∂y r cos θ
)
r sin θ − ∂u

∂x r cos θ +
(
− ∂2u

∂x∂y r sin θ + ∂2u
∂y2 r cos θ

)
r cos θ − ∂u

∂y r sin θ

= r2 sin2 θ ∂
2u
∂x2 + r2 cos2 θ ∂2u

∂x∂y − 2r sin θ cos θ ∂2u
∂x∂y − r cos θ ∂u∂x − r sin θ ∂u∂y

so that
∂2u
∂r2 + 1

r
∂u
∂r + 1

r2
∂2u
∂θ2 = ∂2u

∂x2 + ∂2u
∂y2 .

(b) Find a solution u = u(x, y) to Laplace’s equation ∂2u
∂x2 + ∂2u

∂y2 = 0 in the annulus given by 1 ≤ x2 + y2 ≤ 2

satisfying the boundary conditions u(x, y) = 6 when x2 + y2 = 1 and u(x, y) = 10 when x2 + y2 = 2.

Solution: By symmetry, we look for a solution of the form u = u(r) to Laplace’s equation in polar coordinates
with u(1) = 6 and u(

√
2) = 10. When u = u(r), Laplace’s equation in polar coordinates becomes u′′+ 1

ru
′ = 0.

Letting v = v(r) = u′(r) and v′(r) = u′′(r), the DE becomes v′ + 1
rv = 0, which is linear. An integrating

factor is λ = e
∫

1
r dr = eln r = r, and the solution is given by v(r) = 1

r

∫
0 dr = a

r , that is u′ = a
r . Integrate

to get u = a ln r + b. To get u(1) = 6 we need b = 6 so that u(r) = 6 + a lnx. Then to get u(
√

2) = 10 we
need 6 + a ln

√
2 = 10, so we must take a = 4

ln
√
2

= 8
ln 2 and the solution is u(r) = 6 + 8

ln 2 ln r. In Cartesian

coordinates, this can be written as u(x, y) = 6 + 8
ln 2 ln

√
x2 + y2 = 6 + 4

ln 2 ln(x2 + y2) = 6 + 4 log
2
(x2 + y2).


