

SYDE Advanced Math 2, Solutions to Assignment 11

1: The following ODEs are examples of Sturm-Liouville boundary value problems involving a parameter k . In each case, non-zero solutions only occur for certain values of k , which are called *eigenvalues* and the corresponding solutions are called *eigenfunctions*.

(a) Find the possible values of $k \in \mathbb{R}$ and the non-zero solutions the ODE $u'' = ku$ for $u = u(x)$ satisfying the boundary conditions $u'(0) = 0$ and $u(1) = 0$.

Solution: When $k = 0$, the DE $u'' = ku$ becomes $u'' = 0$, which has solutions $u(x) = ax + b$ with $u'(x) = a$. To get $u'(0) = 0$ we need $a = 0$ so that $u(x) = b$, and then to get $u(1) = 0$ we need $b = 0$, so we only obtain the zero solution. Suppose $k > 0$ with $k = \sigma^2$, the DE becomes $u'' - \sigma^2 u = 0$, which has solutions $u(x) = ae^{\sigma x} + be^{-\sigma x}$ with $u'(x) = \sigma ae^{\sigma x} - \sigma be^{-\sigma x}$. To get $u'(0) = 0$ we need $\sigma a - \sigma b = 0$, that is $\sigma a = \sigma b$, and hence $a = b$ (since $\sigma > 0$). To get $u(1) = 0$ we need $0 = ae^\sigma + be^{-\sigma} = ae^\sigma + ae^{-\sigma} = a(e^\sigma + e^{-\sigma})$ and hence $a = 0$ (since $e^\sigma + e^{-\sigma} > 0$). Thus when $k > 0$ we only obtain the zero solution. Suppose that $k < 0$, say $k = -\sigma^2$ with $\sigma > 0$. The DE becomes $u'' + \sigma^2 u = 0$ which has solutions $u(x) = a \sin \sigma x + b \cos \sigma x$ with $u'(x) = \sigma a \cos \sigma x - \sigma b \sin \sigma x$. To get $u'(0) = 0$ we need $a = 0$ so that $u(x) = b \cos \sigma x$. To get $u(1) = 0$ we need $b \cos \sigma = 0$. When $b = 0$ we obtain the zero-solution, so for a non-zero solution we need $\cos \sigma = 0$ which occurs when $\sigma = \frac{\pi}{2} + n\pi$ for some $0 \leq n \in \mathbb{Z}$. Thus the values of k for which a non-zero solution exists are the values $k = -\sigma^2 = -(\frac{\pi}{2} + n\pi)^2$ with $0 \leq n \in \mathbb{Z}$, and the corresponding solutions are given by $u(x) = u_n(x) = b_n \cos \sigma x = b_n \cos((\frac{\pi}{2} + n\pi)x)$.

(b) Find the possible values of $k \in \mathbb{R}$ and the non-zero solutions to the ODE $x^2 u'' + xu' + ku = 0$ satisfying the boundary conditions $u(1) = 0$ and $u(4) = 0$.

Solution: This DE is a Cauchy-Euler equation. We found the solutions to Cauchy-Euler equations in Question 2 on Problem Set 4. To solve the DE $x^2 u'' + xu' + ku = 0$, we let $y = x^r$ and put this in the DE to get $r(r-1) + r + k = 0$, that is $r^2 + k = 0$. When $k = 0$ we find that $r = 0$ (a repeated real root) so the solutions to the DE are given by $u(x) = a + b \ln x$. To get $u(1) = 0$ we need $a = 0$ so that $u(x) = b \ln x$, then to get $u(4) = 0$ we need $b = 0$ giving the zero solution. When $k < 0$, say $k = -\sigma^2$ with $\sigma > 0$, the equation $r^2 + k = 0$ becomes $r^2 - \sigma^2 = 0$ giving $r = \pm\sigma$, so the solutions to the DE are given by $u(x) = ax^\sigma + bx^{-\sigma}$. To get $u(1) = 0$ we need $a + b = 0$ so $b = -a$ and $u(x) = a(x^\sigma - x^{-\sigma})$. To get $u(4) = 0$ we need $a(4^\sigma - 4^{-\sigma}) = 0$ and hence $a = 0$ (because $4^\sigma > 1$ and $4^{-\sigma} < 1$ so that $4^\sigma - 4^{-\sigma} > 0$), so we only obtain the zero solution. Suppose that $k > 0$, say $k = \sigma^2$. The equation $r^2 + k = 0$ becomes $r^2 + \sigma^2 = 0$ so that $r = \pm\sigma i$, and the solutions to the DE are given by $u(x) = a \cos(\sigma \ln x) + b \sin(\sigma \ln x)$. To get $u(1) = 0$ we need $a = 0$ so that $u(x) = b \sin(\sigma \ln x)$. To get $u(4) = 0$, for a non-zero solution we need $\sin(\sigma \ln 4) = 0$, so we must have $\sigma \ln 4 = n\pi$ for some positive integer n . Thus the values of k for which there exists a non-zero solution are $k = \sigma^2 = (\frac{n\pi}{\ln 4})^2$ with $0 < n \in \mathbb{Z}$, and the corresponding solutions are $u(x) = u_n(x) = b_n \sin(\frac{n\pi}{\ln 4} \ln x)$.

2: Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ for $u = u(x, t)$ with $0 \leq x \leq 4$ and $t \geq 0$, satisfying the fixed endpoint condition $u(0, t) = u(4, t) = 0$ for all $t \geq 0$ and the initial conditions $u(x, 0) = 0$ and $\frac{\partial u}{\partial t}(x, 0) = 2 \sin \frac{\pi x}{4}$ for $0 \leq x \leq 4$.

Solution: We know (from Example 4.10 in the Lecture Notes) that the solution to the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ with $u(0, t) = u(\ell, t) = 0$ for $t \geq 0$ and $u(x, 0) = 0$ and $\frac{\partial u}{\partial t}(x, 0) = g(t)$ for $0 \leq x \leq \ell$ is given by $u(x, t) = \sum_{n=1}^{\infty} d_n \sin\left(\frac{cn\pi}{\ell}t\right) \sin\left(\frac{n\pi}{\ell}x\right)$ where the constants $\frac{cn\pi}{\ell}d_n$ are the Fourier coefficients for the odd 2ℓ -periodic function which is equal to $g(x)$ for $0 \leq x \leq \ell$. In this problem, we take $c = 2$ and $\ell = 4$ and $g(x) = 2 \sin\left(\frac{\pi}{4}x\right)$. Note that $g(x)$ is already in the form of a trigonometric polynomial for an 8-periodic function, and we have $g(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{4}x\right)$ with Fourier coefficients $b_1 = 2$ and $b_n = 0$ for $n \geq 2$. To get $\frac{cn\pi}{\ell}d_n = b_n$ with $c = 2$ and $\ell = 4$, we need $d_n = \frac{2}{n\pi}b_n$, so $d_1 = \frac{4}{\pi}$ and $d_n = 0$ for $n \geq 2$. The solution is

$$u(x, t) = \sum_{n=1}^{\infty} d_n \sin\left(\frac{cn\pi}{\ell}t\right) \sin\left(\frac{n\pi}{\ell}x\right) = \frac{4}{\pi} \sin\left(\frac{\pi}{2}t\right) \sin\left(\frac{\pi}{4}x\right).$$

3: Solve the heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ for $u = u(x, t)$ with $0 \leq x \leq \ell$ and $t \geq 0$ satisfying the fixed endpoint temperature condition $u(0, t) = 0$ and $u(\ell, t) = 0$ for all $t \geq 0$ and the initial condition $u(x, 0) = f(x)$ for all $0 \leq x \leq \ell$ where $f(x)$ is given by $f(x) = 0$ for $0 \leq x < \frac{1}{4}\ell$, $f(x) = 1$ for $\frac{1}{4}\ell < x < \frac{3\ell}{4}$ and $f(x) = 0$ for $\frac{3\ell}{4} < x \leq \ell$ (with $f(\frac{\ell}{4}) = f(\frac{3\ell}{4}) = \frac{1}{2}$ so that $f(x)$ is equal to the sum of its Fourier series).

Solution: We know (from Exercise 4.13 in the Lecture Notes) that the solution to the heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ satisfying the fixed endpoint temperature conditions $u(0, t) = u(\ell, t) = 0$ for $t \geq 0$ and the initial condition $u(x, 0) = f(x)$ for $0 \leq x \leq \ell$ is given by $u(x, t) = \sum_{n=0}^{\infty} b_n e^{-(cn\pi/\ell)^2 t} \cos\left(\frac{n\pi}{\ell}x\right)$ where the b_n are the Fourier coefficients of the odd 2ℓ -periodic function which is equal to $f(x)$ for $0 \leq x \leq \ell$. We need

$$b_n = \frac{2}{\ell} \int_0^{\ell} f(x) \sin\left(\frac{n\pi}{\ell}x\right) dx = \frac{2}{\ell} \int_{\ell/4}^{3\ell/4} \sin\left(\frac{n\pi}{\ell}x\right) x = \frac{2}{\ell} \left[-\left(\frac{\ell}{n\pi}\right) \cos\left(\frac{n\pi}{\ell}x\right) \right]_{\ell/4}^{3\ell/4} = \frac{2}{n\pi} \left(\cos\frac{n\pi}{4} - \cos\frac{3n\pi}{4} \right).$$

We have two sequences, both of period 8, given by $(\cos \frac{n\pi}{4})_{n \geq 0} = (1, \frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2}, -1, -\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}, 1, \dots)$ and $(\cos \frac{3n\pi}{4})_{n \geq 0} = (1, -\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}, -1, \frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2}, 1, \dots)$, and subtracting the second from the first gives $(\cos \frac{n\pi}{4} - \cos \frac{3n\pi}{4})_{n \geq 0} = (0, \sqrt{2}, 0, -\sqrt{2}, 0, -\sqrt{2}, 0, \sqrt{2}, 0, \dots)$. Thus the coefficients are given by $b_n = 0$ when n is even, and $b_n = \frac{2\sqrt{2}}{n\pi}$ when $n = \pm 1 + 8k$, and $b_n = -\frac{2\sqrt{2}}{n\pi}$ when $n = \pm 3 + 8k$, which we can write as $b_n = (-1)^{(n-1)(n-7)/8}$ when n is odd. The solution is

$$u(x, t) = \sum_{n \text{ odd}} (-1)^{\frac{(n-1)(n-7)}{8}} \frac{2\sqrt{2}}{n\pi} e^{(cn\pi/\ell)^2 t} \cos\left(\frac{n\pi}{\ell}x\right).$$

4: Solve the heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ for $u = u(x, t)$ with $0 \leq x \leq \ell$ and $t \geq 0$ satisfying the insulated ends condition $\frac{\partial u}{\partial x}(0, t) = 0$ and $\frac{\partial u}{\partial x}(\ell, t) = 0$ for all $t \geq 0$ and the initial condition $u(x, 0) = f(x)$ for all $0 \leq x \leq \ell$ where $f(x)$ is given by $f(x) = 1$ for $0 < x < \frac{2\ell}{3}$ and $f(x) = 3$ for $\frac{2\ell}{3} < x < \ell$ (with $f(0) = f(\frac{2\ell}{3}) = f(1) = 2$).

Solution: We know (from Exercise 4.14) that the solution is given by $u(x, t) = \sum_{n=0}^{\infty} d_n e^{-(cn\pi/\ell)^2 t} \cos\left(\frac{n\pi}{\ell} x\right)$ where the a_n are the Fourier coefficients of the even 2ℓ -periodic function which is equal to $f(x)$ for $0 \leq x \leq \ell$. We need

$$\begin{aligned} a_0 &= \frac{1}{\ell} \int_{x=0}^{\ell} f(x) dx = \frac{1}{\ell} \left(\int_0^{2\ell/3} 1 dx + \int_{2\ell/3}^{\ell} 3 dx \right) = \frac{1}{\ell} \left(\frac{2\ell}{3} + \ell \right) = \frac{5}{3} \\ a_n &= \frac{2}{\ell} \int_0^{\ell} f(x) \cos\left(\frac{n\pi}{\ell} x\right) dx = \frac{2}{\ell} \left(\int_0^{2\ell/3} \cos\left(\frac{n\pi}{\ell} x\right) dx + \int_{2\ell/3}^{\ell} 3 \cos\left(\frac{n\pi}{\ell} x\right) dx \right) \\ &= \frac{2}{\ell} \left(\left[\frac{\ell}{n\pi} \sin\left(\frac{n\pi}{\ell} x\right) \right]_0^{2\ell/3} + \left[\frac{3\ell}{n\pi} \sin\left(\frac{n\pi}{\ell} x\right) \right]_{2\ell/3}^{\ell} \right) = \frac{2}{\ell} \left(\frac{\ell}{n\pi} \sin \frac{2n\pi}{3} - \frac{3\ell}{n\pi} \sin \frac{2n\pi}{3} \right) \\ &= -\frac{4}{n\pi} \sin \frac{2n\pi}{3} = \begin{cases} 0 & \text{if } n = 0 + 3k \\ -\frac{2\sqrt{3}}{n\pi} & \text{if } n = 1 + 3k \\ \frac{2\sqrt{3}}{n\pi} & \text{if } n = 2 + 3k \end{cases}. \end{aligned}$$

The solution is

$$\begin{aligned} u(x, t) &= \frac{5}{3} - \sum_{n=0}^{\infty} \frac{4}{n\pi} \sin \frac{2n\pi}{3} e^{(cn\pi/\ell)^2 t} \cos\left(\frac{n\pi}{\ell} x\right) \\ &= \frac{5}{3} - \sum_{n=1+3k} \frac{2\sqrt{3}}{n\pi} e^{(cn\pi/\ell)^2 t} \cos\left(\frac{n\pi}{\ell} x\right) + \sum_{n=2+3k} \frac{2\sqrt{3}}{n\pi} e^{(cn\pi/\ell)^2 t} \cos\left(\frac{n\pi}{\ell} x\right). \end{aligned}$$

5: Solve Dirichlet's problem, that is solve Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, for $u = u(x, y)$ on the square $0 \leq x \leq 1$, $0 \leq y \leq 1$ satisfying the boundary conditions $u(x, 0) = x$ and $u(x, 1) = x$ for $0 \leq x \leq 1$, and $u(0, y) = \sin \pi y$ and $u(1, y) = 1 - \sin \pi y$ for $0 \leq y \leq 1$.

Solution: Note that $v = v(x, y) = x$ satisfies Laplace's equation with $v(x, 0) = v(1, 0) = x$ and $v(0, y) = 0$ and $v(1, y) = 1$. If $u = u(x, y)$ is the desired solution and $w = u - v$, then we will have $w(x, 0) = 0$, $w(x, 1) = 0$, $w(0, y) = \sin \pi y$ and $w(1, y) = -\sin \pi y$. Following the method of Example 4.15, we find two functions $w = w_3(x, y)$ and $w = w_4(x, y)$ where $w_3(0, y) = f_3(y) = \sin \pi y$ and is zero on the other 3 edges of the square, and $w_4(1, y) = f_4(y) = -\sin \pi y$ and is zero on the other 3 edges of the square. As shown in Example 4.15, the function $w_3(x, y)$ is given by $w_3(x, y) = \sum_{n=1}^{\infty} c_n \sinh(n\pi(1-x)) \sin(n\pi y)$ where the constants $c_n \sinh(n\pi)$ are the Fourier coefficients of the odd 2-periodic function which is equal to $f_3(y) = \sin \pi y$. Note that $f_3(y)$ is already in the form of a trigonometric polynomial, so we see that its Fourier coefficients are given by $b_1 = 1$ and $b_n = 0$ for $n \neq 1$, so we have $c_1 = \frac{1}{\sinh \pi}$ and $c_n = 0$ for $n \neq 1$. Thus

$$w_3(x, y) = \frac{1}{\sinh \pi} \sinh(\pi(1-x)) \sin(\pi y).$$

Using a similar (but slightly easier) argument to the argument used in Example 4.15, or (more easily) by using symmetry (by replacing $1 - x$ by x and noting that $f_4(y) = -f_3(y)$) we see that

$$w_4(x, y) = -\frac{1}{\sinh \pi} \sinh(\pi x) \sin(\pi y).$$

Thus the solution $u = u(x, y)$ to the given problem is

$$u(x, y) = v(x, y) + w_3(x, y) + w_4(x, y) = x + \frac{1}{\sinh \pi} (\sinh(\pi(1-x)) - \sinh(\pi x)) \sin(\pi y).$$

6: Consider Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

(a) Change to polar coordinates by letting $x = r \cos \theta$ and $y = r \sin \theta$. Use the Chain Rule to calculate $\frac{\partial u}{\partial r}$ and $\frac{\partial^2 u}{\partial r^2}$, and $\frac{\partial u}{\partial \theta}$ and $\frac{\partial^2 u}{\partial \theta^2}$, and hence show that Laplace's equation, for $u = u(r, \theta) = u(x(r, \theta), y(r, \theta))$, becomes

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0.$$

Solution: By the Chain Rule, we have

$$\begin{aligned} \frac{\partial u}{\partial r} &= \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta \\ \frac{\partial^2 u}{\partial r^2} &= \left(\frac{\partial^2 u}{\partial x^2} \frac{\partial x}{\partial r} + \frac{\partial^2 u}{\partial x \partial y} \frac{\partial y}{\partial r} \right) \cos \theta + \left(\frac{\partial^2 u}{\partial x \partial y} \frac{\partial x}{\partial r} + \frac{\partial^2 u}{\partial y^2} \frac{\partial y}{\partial r} \right) \sin \theta \\ &= \left(\frac{\partial^2 u}{\partial x^2} \cos^2 \theta + \frac{\partial^2 u}{\partial x \partial y} \sin \theta \right) \cos \theta + \left(\frac{\partial^2 u}{\partial x \partial y} \cos \theta + \frac{\partial^2 u}{\partial y^2} \sin \theta \right) \sin \theta \\ &= \cos^2 \theta \frac{\partial^2 u}{\partial x^2} + \sin^2 \theta \frac{\partial^2 u}{\partial y^2} + 2 \sin \theta \cos \theta \frac{\partial^2 u}{\partial x \partial y} \end{aligned}$$

and

$$\begin{aligned} \frac{\partial u}{\partial \theta} &= \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta} = -\frac{\partial u}{\partial x} r \sin \theta + \frac{\partial u}{\partial y} r \cos \theta \\ \frac{\partial^2 u}{\partial \theta^2} &= \left(-\frac{\partial^2 u}{\partial x^2} \frac{\partial x}{\partial \theta} - \frac{\partial^2 u}{\partial x \partial y} \frac{\partial y}{\partial \theta} \right) r \sin \theta - \frac{\partial u}{\partial x} r \cos \theta + \left(\frac{\partial^2 u}{\partial x \partial y} \frac{\partial x}{\partial \theta} + \frac{\partial^2 u}{\partial y^2} \frac{\partial y}{\partial \theta} \right) r \cos \theta - \frac{\partial u}{\partial y} r \sin \theta \\ &= \left(\frac{\partial^2 u}{\partial x^2} r \sin \theta - \frac{\partial^2 u}{\partial x \partial y} r \cos \theta \right) r \sin \theta - \frac{\partial u}{\partial x} r \cos \theta + \left(-\frac{\partial^2 u}{\partial x \partial y} r \sin \theta + \frac{\partial^2 u}{\partial y^2} r \cos \theta \right) r \cos \theta - \frac{\partial u}{\partial y} r \sin \theta \\ &= r^2 \sin^2 \theta \frac{\partial^2 u}{\partial x^2} + r^2 \cos^2 \theta \frac{\partial^2 u}{\partial y^2} - 2r \sin \theta \cos \theta \frac{\partial^2 u}{\partial x \partial y} - r \cos \theta \frac{\partial u}{\partial x} - r \sin \theta \frac{\partial u}{\partial y} \end{aligned}$$

so that

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}.$$

(b) Find a solution $u = u(x, y)$ to Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in the annulus given by $1 \leq x^2 + y^2 \leq 2$ satisfying the boundary conditions $u(x, y) = 6$ when $x^2 + y^2 = 1$ and $u(x, y) = 10$ when $x^2 + y^2 = 2$.

Solution: By symmetry, we look for a solution of the form $u = u(r)$ to Laplace's equation in polar coordinates with $u(1) = 6$ and $u(\sqrt{2}) = 10$. When $u = u(r)$, Laplace's equation in polar coordinates becomes $u'' + \frac{1}{r} u' = 0$. Letting $v = v(r) = u'(r)$ and $v'(r) = u''(r)$, the DE becomes $v' + \frac{1}{r} v = 0$, which is linear. An integrating factor is $\lambda = e^{\int \frac{1}{r} dr} = e^{\ln r} = r$, and the solution is given by $v(r) = \frac{1}{r} \int 0 dr = \frac{a}{r}$, that is $u' = \frac{a}{r}$. Integrate to get $u = a \ln r + b$. To get $u(1) = 6$ we need $b = 6$ so that $u(r) = 6 + a \ln r$. Then to get $u(\sqrt{2}) = 10$ we need $6 + a \ln \sqrt{2} = 10$, so we must take $a = \frac{4}{\ln \sqrt{2}} = \frac{8}{\ln 2}$ and the solution is $u(r) = 6 + \frac{8}{\ln 2} \ln r$. In Cartesian coordinates, this can be written as $u(x, y) = 6 + \frac{8}{\ln 2} \ln \sqrt{x^2 + y^2} = 6 + \frac{4}{\ln 2} \ln(x^2 + y^2) = 6 + 4 \log_2(x^2 + y^2)$.