SYDE Advanced Math 2, Solutions to Assignment 10

: (a) Use the method of separation of variables to find a solution u = u(z,y) to the PDE 2% + ‘g; =2(x+y)u
with «(1,0) =4 and u(0,1) =

Solution: Let u(z,y) = X(z)Y(y). Then 2% = X’ Y and 9% = XY'. Putting this in the PDE gives

X'Y + XY’ = 2(x + y)XY. Dividing by XY gives X -4 Y = 2x + 2y, that is X((;c)) — 2z = 2y — 1;/((;’))

Since the left side depends only on z and the right side depends only on y, in order to be equal for all zand
Y/

y both sides must be constant, say X —2r=k=2y— 3. The DE = — 2x = k is linear, since we can
write it as X’ — (22 + k)X = 0, an integrating factor is given by A = e_”f k) and the solution is given by

X = ae”’ ke, Similarly, the DE k = 2y — YTI is linear as it can be written as Y/ — (2y — k)Y = 0 and the
solution is Y = be¥" ~¥. Thus we obtain the solution u(z,y) = X ()Y (y) = ce® Thred’—hy — ¢ " +v* +h(z—y)
to the original PDE (where ¢ = ab). To get u(1,0) = 4 we need ce'!** = 4, that is cee’ = 4 (1) and to get
u(0,1) = 1 we need ce! =% = 1, that is cee™* = 1 (2). Dividing equation (1) by equastion (2) gives e** = 4
so that k = In2, and putting this in equation (1) gives ¢ = % Thus we obtain the solution

w = cet Ty Hk(z—y) — 2 o’ +y?+(z—y)In2 _ 2 2 +y® gr—y _ gz—y+1 2 +y" -1
e e

(b) Solve the PDE given by % 8“ + 28“ =y for u = u(x,y) with u(z,y) = 1 on the line x + y = 1 by making
a change of variables, lettlng 7' =x and s =y —2x.

Solution: Let r = z and s = y — 2x and note that x = r and y = s + 2x = s + 2r. By the Chain Rule, we

have
ou ou Or ou 9s __ 26u
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o +25; = (5 —250) +2(%) = 3
so the PDE becomes g“ = s+2r. This gives u = [ s+2r dr = sr +7? + k(s). The line z+y = 1 in the new
coordinates r, s becomes r + (s + 2r) = 1, that is 3r + s = 1, so to have u = 1 on the line  + y = 1 we need

(s)=1-sr—r?=1-s(15%) - (153)2 =$(8—5+5%).

1 = sr+72+k(s) whenever r = 1
Thus the solution is given by

u=sr+r?+k(s)=sr+r?+§8—s+s?
:%(9sr+9r2+875+252)
= 1 (9(y — 22)x + 92% + 8 — (y — 22) + 2(y — 22)?)
s(—2®+ay+ 22+ 22—y +38).




2: (a) Use separation of variables and Fourier series to solve the wave equation %3

Py ig—g for u = u(x,t) with
0 <z < 2andt € R satisfying the fixed ends condition u(0,t) = u(2,t) = 0 for all ¢ € R and the initial

conditions u(x,0) = (sin7wz)(1 + cos ) and 61; (z,0) =0forall 0 <z <2.

Solution: Let f(z) = (sin7z)(1+cos 7z) = sin rz+sin 7z cos 7z = sin Tz + § sin 27z. We know (see Example
4.10) that the solution u = u(x,t) to the wave equation with ¢ = 1 and ¢ = 2 with fixed ends satisfying
u(x,0) = f(x) and %(m, 0) = 0 is given by

u(z,t) = Z an cos (£25¢) sin (% z) = Z an cos (2t) sin (% z)

n=0

where the a,, are the Fourier coefficients of the odd function of period 2¢ = 4 equal to f(z) = sin 7rx+% sin 27z
for 0 < x < 2. By inspection, the Fourier coefficients of f(x) are given by as = 1 and a4 = % and a,, = 0 for
all n # 2,4, so the solution is

u(x,t) = cos (5 t) sin(ra) + 3 cos(mt) sin(27x).

(b) Find a constant ¢ and function g(z) such that u(x,t) = g(z + ct) + g(z — ct) for all z,t (and show that
this is the case).

Solution: Let ¢ = 1 and g(z) = 3 f(z) = 1 sin(nz) + 1 sin(27z). Then
glz +et) =g(z+3) = gsin(r(z+3)) + gsin (27(z + 5))
= % sin (7rw + ”— i sin (27mc + 7rt)

= 3 (sin(mz) cos

,—\\_/UJ

[\3‘—‘\ + :3

L) + cos(mx)sin (%)) + 1 (sin(27z) cos(wt) + cos(2mz) sin(rt))

and similarly

g(z —ct) =g(z — 1) = Lsin (rz — L) + 1 sin (272 — 7t)
s

= %(sin(mc) cos 7) — cos(mz) sin (’T;)) + %(sin(ch) cos(mt) — cos(2mx) sin(mf))
and so g(z + ct) + g(z — ct) = sin(wz) cos (%) + & sin(2mz) cos(nt) = u(z, t).

(c) By plotting points, accurately sketch the graphs u = u(x,t) (in the zu-plane) for ¢ = 0, ;, 1, ;’,2

Solution: We have u(z,0) = sin(rz) + 1 sin(27z), and u(z, 1) = g sin(rz), and u(z,1) = —1 sin(27t), and
u(z,3) = 7% sin(rz), and u(z,2) = —sin(rz) + 1 sin(27z). The graphs are shown below:
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3: (a) Solve the heat equation %7; = % for u = u(x,t) with 0 <z < 7 and ¢ > 0 satisfying the insulated ends

condition 2%(0,¢) = 9%(m,t) = 0 for all ¢t > 0 and the initial condition u(z,0) = 22 for all 0 < z < 7.

Solution: We know (Exercise 4.14) that the solution to the heat equation with ¢ = 1 and ¢ = 7 with insulated
ends satisfying u(z,0) = f(x) = 22 is given by

) 2
u(x,t) = > aze ™ tcosnz
n=0

where the constants a,, are the Fourier coefficients of the even 27-periodic function which is equal to f(z) = 22

for 0 < z < m. The coefficients are
" 2 11.2]" 2
$d$:*|:fl'i| =2, and
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22 cosnx do = 2 {lﬁ sin nx} — 2y sinnx dx
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{x cos nw} =25 -7(-1)"= =
0

ag =

31—

3o

Ap =

™2

Thus the solution is given by
o0 x n
w(z,t) =S ane "t cosna = %2 + 3 D et cos g
n=0 n=1
= %2 — 4(e’t cosz — te " cos 2z + %efgt cos 3z — %66’1& cosdx + - - )
(b) Give a fairly accurately sketch of the graphs of u = u(x,t) (in the zu-plane) for t =0, 3, 1, 10.

Solution: When ¢ = 0 we have u(z,0) = 2%, when ¢ = 1 we have u(z, §) = %2 —4de Y2 cosx + 3e7% cos 2,

when ¢ = 1 we have u(z, 1) & %2 —4e~ ! cosz, and when t = 10 we have u(x, 10) = %2 These approximations
are sketched below (in dark blue, lighter blue, cyan, and green):




4: (a) Define f : R — R by f(2) = 22 and let v,w : R> — R be the real and imaginary parts of f so that

f(z+iy) = v(z,y) + iw(z,y). Show that v and w both satisfy Laplace’s equation.
Solution: We have f(z +iy) = (z + iy)? = (:c —y %) +i(2zy) and so v(z,y) = 2% — y? and w(x,y) = 2zy.
Wehave%:lvandg”— —2y so that I2+8y —2—2:0,andwehave%:yand%—z:xsothat

2 2
S+ 5E=0+0=0.

(b) Solve Laplace’s equation % + 8— =0 for u = u(z,y) on the square 0 < z < 1, 0 < y < 1 satisfying
the boundary conditions u(z,0) = 22, u(z,1) = x — 1, u(0,y) = —y? and u(1,y) = 1 — y>. Hint: use v(z,y)
from Part (a) and notice that u(x, ) v(z,1) =22 — 1.

Solution: Note that for the function v = v(z,y) = 22 —y? from Part (a) we have v(z,0) = 2%, v(z,1) = 22 -1,

v(0,y) = —y? and v(1,y) = 1 — y%. These are similar to the desired boundary conditions for u = u(x,y):
indeed if u = u(x,y) satisfies the desired boundary conditions and we let w(z,y) = u(x,y) — v(z,y) then w
will satisfy the boundary conditions w(x,0) = 0, w(z,1) = x — 22, w(0,y) = 0 and w(1,y) = 0.
Let us try to find a solution w = w(x,y) to Laplace’s equation such that w(z,0) =0, w(z,1) =2 —
w(0,y) = 0 and w(l,y) = 0. We try w = XY Laplaces equation becomes XY + XY” = 0, that is
)g(” = fYT, so that we must have Xy =k = 77 for some constant k, and the initial conditions become
X(2)Y(0) =0, X(2)Y(1) =2 — 22, X(0)Y(y) = 0 and X(1)Y(0) = 0, so that (for a non-zero solution) we
must have X (0) =0, X(1) =0, Y(0) =0 and w(z,1) = X (2)Y (1) = z — 22. First we solve XTN =k, that is
X" — kX =0, with X(0) =0 and X (1) = 0. As with the wave equation, when k > 0 there are no non-zero
solutions, and when k = —o? with o > 0, the are non-zeroo solutions only when k = —02? = —(n7)? and in
this case the solutions are given by X,, = b, sin(nwz). When k = —02 = —(nm)?, the second DE };,” =—k
becomes Y — (nm)?Y = 0 which has solutions Y =Y, = a,e"™ +be~ "™ and the initial condition Y (0) = 0
gives a, + b, = 0 so that Y,, = a,e"™¥ — an,e™ "™ = 2a, sinh(nmy). Thus for each n € ZT we have found
a solution w = wy(x,y) = X (2)Yn(y) = cpsinh(nmy) sin(nma), and this solution satisfies the 3 boundary
conditions wy, (z,0) = w,(0,y) = w,(1,y) = 0. We let

2

o0
w=w(z,y) = > ¢,sinh(nry)sin(nrz).
n=1
o0
2 we need Y ¢, sinh(nm)sin(nrz) = x — 22 for all 0 < x < 1,
n=1
so the numbers ¢, sinh(n7) must be equal to the Fourier coefficients of the odd periodic function of period
2 which is equal to f(z) = x — 22 for 0 < 2 < 1. Thus we must have

To satisfy the last condition w(z,1) =2 —

¢ sinh(nm) = 2 /Ol(z — 2%)sin(nnz) dz = 2({ — Lz —2? Sin(nﬂ'x)}; - 01 2z cos(nmz) dz)

nm

1

1 1
=-2 ; x cos(nrx) dx = fﬂ({cos(nﬁx)} — /0 L sin(nra) d:c)

0

! 1
= (ni)2 / sin(nmzx) de = 7ﬁ [%x sin(mr:c)] = ﬁ(l _ (71)n)’
0 0
so we have ¢, sinh(nm) = (m)s when n is odd and ¢, = 0 when n is even. Thus our solution w is given by

w(z,y) = de m sinh(nmy) sin(nrx).

The solution u = u(x,y) to the original problem is given by u(z,y) = v(z,y) + w(x,y), that is

u(z,y) =22 —y* + 3 m sinh(nmy) sin(nmrx).
dd

n o



