
SYDE Advanced Math 2, Solutions to Assignment 10

1: (a) Use the method of separation of variables to find a solution u = u(x, y) to the PDE ∂u
∂x + ∂u

∂y = 2(x+ y)u

with u(1, 0) = 4 and u(0, 1) = 1.

Solution: Let u(x, y) = X(x)Y (y). Then ∂u
∂x = X ′Y and ∂u

∂y = XY ′. Putting this in the PDE gives

X ′Y + XY ′ = 2(x + y)XY . Dividing by XY gives X′

X + Y ′

Y = 2x + 2y, that is X′(x)
X(x) − 2x = 2y − Y ′(y)

Y (y) .

Since the left side depends only on x and the right side depends only on y, in order to be equal for all xand
y both sides must be constant, say X′

X − 2x = k = 2y − Y ′

Y . The DE X′

X − 2x = k is linear, since we can

write it as X ′ − (2x+ k)X = 0, an integrating factor is given by λ = e−x
2−kx) and the solution is given by

X = a ex
2+kx. Similarly, the DE k = 2y − Y ′

Y is linear as it can be written as Y ′ − (2y − k)Y = 0 and the

solution is Y = b ey
2−y. Thus we obtain the solution u(x, y) = X(x)Y (y) = c ex

2+kxey
2−ky = c ex

2+y2+k(x−y)

to the original PDE (where c = ab). To get u(1, 0) = 4 we need ce1+k = 4, that is ce ek = 4 (1) and to get
u(0, 1) = 1 we need ce1−k = 1, that is ce e−k = 1 (2). Dividing equation (1) by equastion (2) gives e2k = 4
so that k = ln 2, and putting this in equation (1) gives c = 2

e . Thus we obtain the solution

u = c ex
2+y2+k(x−y) = 2

e e
x2+y2+(x−y) ln 2 = 2

e e
x2+y2 2x−y = 2x−y+1ex

2+y2−1.

(b) Solve the PDE given by ∂u
∂x + 2∂u∂y = y for u = u(x, y) with u(x, y) = 1 on the line x+ y = 1 by making

a change of variables, letting r = x and s = y − 2x.

Solution: Let r = x and s = y − 2x and note that x = r and y = s + 2x = s + 2r. By the Chain Rule, we
have

∂u
∂x = ∂u

∂r
∂r
∂.x + ∂u

∂s
∂s
∂x = ∂u

∂r − 2∂u∂s
∂u
∂y = ∂u

∂r
∂r
∂y + ∂u

∂s
∂s
∂y = ∂u

∂s

∂u
∂x + 2∂u∂y =

(
∂u
∂r − 2∂u∂s

)
+ 2
(
∂u
∂s

)
= ∂u

∂r ,

so the PDE becomes ∂u
∂r = s+ 2r. This gives u =

∫
s+2r dr = sr+ r2 + k(s). The line x+ y = 1 in the new

coordinates r, s becomes r+ (s+ 2r) = 1, that is 3r+ s = 1, so to have u = 1 on the line x+ y = 1 we need

1 = sr+r2 +k(s) whenever r = 1−s
3 , which implies k(s) = 1−sr−r2 = 1−s

(
1−s
3

)
−
(
1−s
3

)2
= 1

9 (8−s+s2).
Thus the solution is given by

u = sr + r2 + k(s) = sr + r2 + 1
9 (8− s+ s2)

= 1
9 (9sr + 9r2 + 8− s+ 2s2)

= 1
9

(
9(y − 2x)x+ 9x2 + 8− (y − 2x) + 2(y − 2x)2

)
= 1

9

(
− x2 + xy + 2y2 + 2x− y + 8

)
.



2: (a) Use separation of variables and Fourier series to solve the wave equation ∂2u
∂t2 = 1

4
∂2u
∂x2 for u = u(x, t) with

0 ≤ x ≤ 2 and t ∈ R satisfying the fixed ends condition u(0, t) = u(2, t) = 0 for all t ∈ R and the initial
conditions u(x, 0) = (sinπx)(1 + cosπx) and ∂u

∂t (x, 0) = 0 for all 0 ≤ x ≤ 2.

Solution: Let f(x) = (sinπx)(1+cosπx) = sinπx+sinπx cosπx = sinπx+ 1
2 sin 2πx. We know (see Example

4.10) that the solution u = u(x, t) to the wave equation with c = 1
2 and ` = 2 with fixed ends satisfying

u(x, 0) = f(x) and ∂u
∂t (x, 0) = 0 is given by

u(x, t) =
∞∑
n=0

an cos
(
cnπ
` t
)

sin
(
nπ
` x
)

=
∞∑
n=0

an cos
(
nπ
4 t
)

sin
(
nπ
2 x
)

where the an are the Fourier coefficients of the odd function of period 2` = 4 equal to f(x) = sinπx+ 1
2 sin 2πx

for 0 ≤ x ≤ 2. By inspection, the Fourier coefficients of f(x) are given by a2 = 1 and a4 = 1
2 and an = 0 for

all n 6= 2, 4, so the solution is

u(x, t) = cos
(
π
2 t
)

sin(πx) + 1
2 cos(πt) sin(2πx).

(b) Find a constant c and function g(x) such that u(x, t) = g(x+ ct) + g(x− ct) for all x, t (and show that
this is the case).

Solution: Let c = 1
2 and g(x) = 1

2f(x) = 1
2 sin(πx) + 1

4 sin(2πx). Then

g(x+ ct) = g
(
x+ t

2

)
= 1

2 sin
(
π
(
x+ t

2

))
+ 1

4 sin
(
2π
(
x+ c

2

))
= 1

2 sin
(
πx+ πt

2

)
+ 1

4 sin
(
2πx+ πt

)
= 1

2

(
sin(πx) cos

(
πt
2

)
+ cos(πx) sin

(
πt
2

))
+ 1

4

(
sin(2πx) cos(πt) + cos(2πx) sin(πt)

)
and similarly

g(x− ct) = g
(
x− t

2

)
= 1

2 sin
(
πx− πt

2

)
+ 1

4 sin
(
2πx− πt

)
= 1

2

(
sin(πx) cos

(
πt
2

)
− cos(πx) sin

(
πt
2

))
+ 1

4

(
sin(2πx) cos(πt)− cos(2πx) sin(πt)

)
and so g(x+ ct) + g(x− ct) = sin(πx) cos

(
πt
2

)
+ 1

2 sin(2πx) cos(πt) = u(x, t).

(c) By plotting points, accurately sketch the graphs u = u(x, t) (in the xu-plane) for t = 0, 12 , 1,
3
2 , 2.

Solution: We have u(x, 0) = sin(πx) + 1
2 sin(2πx), and u

(
x, 12

)
=
√
2
2 sin(πx), and u(x, 1) = − 1

2 sin(2πt), and

u
(
x, 32

)
= −

√
2
2 sin(πx), and u(x, 2) = − sin(πx) + 1

2 sin(2πx). The graphs are shown below:



3: (a) Solve the heat equation ∂u
∂t = ∂2u

∂x2 for u = u(x, t) with 0 ≤ x ≤ π and t ≥ 0 satisfying the insulated ends

condition ∂u
∂x (0, t) = ∂u

∂x (π, t) = 0 for all t ≥ 0 and the initial condition u(x, 0) = x2 for all 0 ≤ x ≤ π.

Solution: We know (Exercise 4.14) that the solution to the heat equation with c = 1 and ` = π with insulated
ends satisfying u(x, 0) = f(x) = x2 is given by

u(x, t) =
∞∑
n=0

ane
−n2t cosnx

where the constants an are the Fourier coefficients of the even 2π-periodic function which is equal to f(x) = x2

for 0 ≤ x ≤ π. The coefficients are

a0 = 1
π

∫ π

0

x2 dx = 1
π

[
1
3x

2
]π
0

= π2

3 , and

an = 2
π

∫ π

0

x2 cosnx dx = 2
π

([
1
nx

2 sinnx
]π
0
−
∫ π

0

2
nx sinnx dx

)
= − 2

π

(
−
[

2
n2x cosnx

]π
0

+

∫ π

0

2
n2 cosnx dx

)
= 4

πn2

[
x cosnx

]π
0

= 4
πn2 · π(−1)n = 4(−1)n

n2 .

Thus the solution is given by

u(x, t) =
∞∑
n=0

ane
−n2t cosnx = π2

3 +
∞∑
n=1

4(−1)n
n2 e−n

2t cosnx

= π2

3 − 4
(
e−t cosx− 1

4e
−4t cos 2x+ 1

9e
−9t cos 3x− 1

16e
−16t cos 4x+ · · ·

)
.

(b) Give a fairly accurately sketch of the graphs of u = u(x, t) (in the xu-plane) for t = 0, 12 , 1, 10.

Solution: When t = 0 we have u(x, 0) = x2, when t = 1
2 we have u

(
x, 12

) ∼= π2

3 − 4e−1/2 cosx+ 4
9e
−2 cos 2x,

when t = 1 we have u(x, 1) ∼= π2

3 −4e−1 cosx, and when t = 10 we have u(x, 10) ∼= π2

3 . These approximations
are sketched below (in dark blue, lighter blue, cyan, and green):



4: (a) Define f : R → R by f(z) = z2 and let v, w : R2 → R be the real and imaginary parts of f so that
f(x+ iy) = v(x, y) + i w(x, y). Show that v and w both satisfy Laplace’s equation.

Solution: We have f(x + iy) = (x + iy)2 = (x2 − y2) + i(2xy) and so v(x, y) = x2 − y2 and w(x, y) = 2xy.

We have ∂v
∂x = 2x and ∂v

∂y = −2y so that ∂2v
∂x2 + ∂2v

∂y2 = 2 − 2 = 0, and we have ∂w
∂x = y and ∂w

∂y = x so that
∂2w
∂x2 + ∂2w

∂y2 = 0 + 0 = 0.

(b) Solve Laplace’s equation ∂2u
∂x2 + ∂2u

∂y2 = 0 for u = u(x, y) on the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 satisfying

the boundary conditions u(x, 0) = x2, u(x, 1) = x− 1, u(0, y) = −y2 and u(1, y) = 1− y2. Hint: use v(x, y)
from Part (a) and notice that u(x, 1) 6= v(x, 1) = x2 − 1.

Solution: Note that for the function v = v(x, y) = x2−y2 from Part (a) we have v(x, 0) = x2, v(x, 1) = x2−1,
v(0, y) = −y2 and v(1, y) = 1 − y2. These are similar to the desired boundary conditions for u = u(x, y):
indeed if u = u(x, y) satisfies the desired boundary conditions and we let w(x, y) = u(x, y)− v(x, y) then w
will satisfy the boundary conditions w(x, 0) = 0, w(x, 1) = x− x2, w(0, y) = 0 and w(1, y) = 0.

Let us try to find a solution w = w(x, y) to Laplace’s equation such that w(x, 0) = 0, w(x, 1) = x− x2,
w(0, y) = 0 and w(1, y) = 0. We try w = XY . Laplace’s equation becomes X ′′Y + XY ′′ = 0, that is
X′′

X = −Y
′′

Y , so that we must have X′′

X = k = −Y
′′

Y for some constant k, and the initial conditions become
X(x)Y (0) = 0, X(x)Y (1) = x − x2, X(0)Y (y) = 0 and X(1)Y (0) = 0, so that (for a non-zero solution) we

must have X(0) = 0, X(1) = 0, Y (0) = 0 and w(x, 1) = X(x)Y (1) = x− x2. First we solve X′′

X = k, that is
X ′′ − kX = 0, with X(0) = 0 and X(1) = 0. As with the wave equation, when k ≥ 0 there are no non-zero
solutions, and when k = −σ2 with σ > 0, the are non-zeroo solutions only when k = −σ2 = −(nπ)2 and in

this case the solutions are given by Xn = bn sin(nπx). When k = −σ2 = −(nπ)2, the second DE Y ′′

Y = −k
becomes Y ′′− (nπ)2Y = 0 which has solutions Y = Yn = ane

nπy + be−nπy and the initial condition Y (0) = 0
gives an + bn = 0 so that Yn = ane

nπy − ane−nπy = 2an sinh(nπy). Thus for each n ∈ Z+ we have found
a solution w = wn(x, y) = Xn(x)Yn(y) = cn sinh(nπy) sin(nπx), and this solution satisfies the 3 boundary
conditions wn(x, 0) = wn(0, y) = wn(1, y) = 0. We let

w = w(x, y) =
∞∑
n=1

cn sinh(nπy) sin(nπx).

To satisfy the last condition w(x, 1) = x − x2 we need
∞∑
n=1

cn sinh(nπ) sin(nπx) = x − x2 for all 0 ≤ x ≤ 1,

so the numbers cn sinh(nπ) must be equal to the Fourier coefficients of the odd periodic function of period
2 which is equal to f(x) = x− x2 for 0 ≤ x ≤ 1. Thus we must have

cn sinh(nπ) = 2

∫ 1

0

(x− x2) sin(nπx) dx = 2

([
− 1

nπ (x− x2) sin(nπx)
]1
0
−
∫ 1

0

2
nπx cos(nπx) dx

)
= − 4

nπ

∫ 1

0

x cos(nπx) dx = − 4
nπ

([
cos(nπx)

]1
0
−
∫ 1

0

1
nπ sin(nπx) dx

)
= 4

(nπ)2

∫ 1

0

sin(nπx) dx = − 4
(nπ)3

[
1
nπx sin(nπx)

]1
0

= 4
(nπ)3

(
1− (−1)n

)
,

so we have cn sinh(nπ) = 8
(nπ)3 when n is odd and cn = 0 when n is even. Thus our solution w is given by

w(x, y) =
∑

n odd

8
(nπ)3 sinh(nπ) sinh(nπy) sin(nπx).

The solution u = u(x, y) to the original problem is given by u(x, y) = v(x, y) + w(x, y), that is

u(x, y) = x2 − y2 +
∑

n odd

8
(nπ)3 sinh(nπ) sinh(nπy) sin(nπx).


