
9. Dimension

9.1 Definition: For an irreducible variety X ⊆ Rn, we define the dimension of X to be

dim(X) = trans
F
K(X).

For a reducible variety X ⊆ Fn, we define the dimension of X to be the maximum of
the dimensions of the irreducible components of X. We say that X has pure dimension
when all of the irreducible components of X have the same dimension.

9.2 Example: When a ∈ Fn we have dim{a} = 0 and, when F is infinite, dim(Fn) = n.

9.3 Theorem: Let X and Y be irreducible affine varieties with X ⊆ Y ⊆ Fn. Then
dim(X) ≤ dim(Y ) with dim(X) = dim(Y ) ⇐⇒ X = Y .

Proof: Let r = dim(X) = trans
F
K(X). Reorder the variables xk, if necessary, so

that {x1, · · · , xr} ⊆ A(X) ⊆ K(X) is a transcendence basis for K(X) over F. Sup-
pose, for a contradiction, that {x1, · · · , xr} ⊆ A(Y ) ⊆ K(Y ) is algebraically dependent
over F. Choose 0 6= g ∈ F[t1, · · · , tr] such that g(x1, · · · , xr) = 0 ∈ A(Y ) ⊆ K(Y ).
Then g(x1, · · · , xr) is equal to zero as a function from Y to F. Since X ⊆ Y , it fol-
lows that g(x1, · · · , xr) is also equal to zero as a function from X to F , so we have
0 = g(x1, · · · , xr) ∈ A(X) ⊆ K(X). But then {x1, · · · , xr} ⊆ K(X) is algebraically
dependent, which contradicts the fact that {x1, · · · , xr} is a transcendence basis for K(X)
over F. Thus {x1, · · · , xr} ⊆ K(Y ) is algebraically independent, as claimed, and so
dim(Y ) = trans

F
K(Y ) ≥ r = dim(X).

Suppose, for a contradiction, that dim(X) = dim(Y ) = r but that X ⊂6= Y . Reorder

the variables xk, if necessary, so that {x1, · · · , xr} ⊆ A(X) ⊆ K(X) is a transcendence
basis for K(X) over F. Then, as shown above, {x1, · · · , xr} ⊆ A(Y ) ⊆ K(Y ) is also
a transcendence basis for K(Y ) over F. Since X ⊂6= Y we have I(Y ) ⊂6= I(X) so we can

choose u ∈ I(X) with u /∈ I(Y ). Then we have u = 0 ∈ A(X) and u 6= 0 ∈ A(Y ). Since
{x1, · · · , xr} is a transcendence basis for K(Y ) over F, it follows that u is algebraic over
F(x1, · · · , xr) ⊆ K(Y ). Let p be the minimal polynomial for u over F(x1, · · · , xr) ⊆ K(Y )
multiplied by the least common denominator so that p is an irreducible polynomial in
F[x1, · · · , xr][t] ⊆ A(Y )[t]. Write

p(t) = p0(x1, · · · , xr) + p1(x1, · · · , xr)t+ · · · p`(x1, · · · , xr)t`.

Since p(t) is irreducible in A(Y )[t], we must have 0 6= p0(x1, · · · , xr) ∈ A(Y ) hence also
0 6= p(x1, · · · , xr) ∈ F[x1, · · · , xr] as a polynomial, because {x1, · · · , xr} ⊆ A(Y ) ⊆ K(Y )
is algebraically independent. Since p(u) = 0 ∈ A(Y ) and X ⊆ Y , we also have p(u) =
0 ∈ A(X). Since u = 0 ∈ A(X) we have 0 = p(u) = p0(x1, · · · , xr) ∈ A(X), hence also
0 = p(x1, · · · , xr) ∈ F[x1, · · · , xr] as a polynomial, because {x1, · · · , xr} ⊆ A(X) ⊆ K(X)
is algebraically independent. Thus we have obtained the desired contradiction.

9.4 Corollary: Let F be an algebraically closed field and let X ⊆ Fn be an irreducible
variety. The dim(X) ≥ ` where ` is the length of the longest chain of irreducible subvarieties
X0
⊂6= X1

⊂6= X2
⊂6= · · · ⊂6= X` = X or, equivalently, the length of the longest chain of prime

ideals 0 = P`
⊂6= P`−1 ⊂6= · · · ⊂6= P1

⊂6= P0
⊂6= A(X).
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9.5 Theorem: (Hypersurfaces) Let F be an algebraically closed field, and let X ⊆ Fn be
an irreducible variety. Then dim(X) = n− 1 if and only if X = V (f) for some irreducible
polynomial f ∈ F[x1, · · · , xn].

Proof: Suppose that dim(X) = n − 1. Since X ⊆ Fn and dim(X) 6= dim(Fn) we have
X ⊂6= Fn and so {0} = I(Fn) ⊂6= I(X). Choose 0 6= g ∈ I(X). Note that g is non-

constant since X 6= ∅. Say g = p1
k1 · · · p`k` where the pk are non-associate irreducible

polynomials in F[x1, · · · , xn]. Since f = p1
k1 · · · pkk` ∈ I(X) and X is irreducible so that

I(X) is prime, it follows that pj ∈ I(X) for some index j, say f = pk ∈ I(X). Since
f ∈ I(X) we have X ⊆ V (f). We claim that X = V (f). Since f is irreducible and F
is algebraically closed, it follows that V (f) is irreducible. Since X ⊆ V (f) ⊂6= Fn we have

n− 1 = dim(X) ≤ dimV (f) < dim(Fn) = n and so dimV (f) = n− 1. Since X and V (f)
are irreducible with X ⊆ V (f) and dim(X) = dimV (f), we have X = V (f), as claimed.

Suppose, conversely, that X = V (f) where f ∈ F[x1, · · · , xn] is irreducible. Since F
is algebraically closed, we know that X = V (f) is irreducible and that I(X) = 〈f〉. One
of the variables xk must occur (in a term with a nonzero coefficient) in the polynomial f .
Reorder the variables, if necessary, so that xn occurs in f , say

f(x1, · · · , xn) = f0(x1, · · · , xn−1) + f1(x1, · · · , xn−1)xn + · · ·+ f`(x1, · · · , xn−1)xn
`.

Since f ∈ I(X) so that f = 0 ∈ A(X), we see that the element xn ∈ A(X) is a root of
the polynomial g(t) = f0(x1, · · · , xn−1) + · · · + f`(x1, · · · , xn−1)t` and so xn is algebraic
over F(x1, · · · , xn−1) ⊆ K(X), and hence we must have dim(X) ≤ n − 1. Suppose, for a
contradiction, that dim(X) < n−1. Then {x1, · · · , xn−1} ⊆ A(X) ⊆ K(X) is algebraically
dependent over F so we can choose a nonzero polynomial 0 6= g ∈ F[x1, · · · , xn−1] such
that g(x1, · · · , xn−1) = 0 ∈ A(X) ⊆ K(X) (so g is not zero as a polynomial, but g is zero
as a function on X). Since g = 0 ∈ A(X) we have g ∈ I(X) = 〈f〉 and so f

∣∣g in the
polynomial ring F[x1, · · · , xn]. This is not possible since xn occurs in f but xn does not
occur in g. Thus we must have dim(X) = n− 1, as required.

9.6 Definition: A hypersurface in Fn is a variety X ⊆ Fn such that every irreducible
component of X has dimension n− 1. When F is algebraically closed, it follows from the
above theorem that a hypersurface in Fn is any variety of the form X = V (f) ⊆ Fn for
some non-constant polynomial f ∈ F[x1, · · · , xn]. In this case, when f = p1

k1p2
k2 · · · p`k`

where the pk are non-associate irreducible polynomials, the irreducible components of X
are the varieties Xk = V (pk) and we have I(X) =

√
〈f〉 = 〈p1p2 · · · p`〉.
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9.7 Note: Recall (or verify) that, when R is an integral domain, two non-constant poly-
nomials f, g ∈ R[x] have a non-constant common factor when there exist non-zero poly-
nomials u, v ∈ R[x] with deg(v) < deg(f) (or equivalently with deg(u) < deg(g)) such
that fu + gv = 0 ∈ R[x]. Note that the equation fu + gv = 0 can be written in matrix

form as follows. If f(x) =
n∑

k=0

akx
k with an 6= 0 and g(x) =

m∑
k=0

bkx
k with bm 6= 0, and

u =
m−1∑
k=0

ukx
k and v =

n−1∑
k=0

then, considering u, v and fu+ gv as elements in Rm, Rn and

Rn+m, the equation fu+ gv = 0 can be written as

a0 0 · · · 0 b0 0 · · · 0
a1 a0 0 b1 b0 0
...

. . .
...

...
. . .

...
an a0 bn b0
0 an a1 0 bn b1
...

. . .
...

...
. . .

...
0 0 · · · an 0 0 · · · bn





u0
u1
...
um
v0
v1
...
vn


=



0
0
...
0
0
...
0


.

The matrix on the left is denoted by Rn,m(f, g). It is called the resultant matrix of f
and g, and it has m columns involving the coefficients ak of f and m columns involving
the bk of g. It follows from the above discussion that f and g have a non-constant common
factor if and only if detRn,m(f, g) = 0. We define the resultant of f and g to be

res n,m(f, g) = detn,mR(f, g).

Note that if deg(f) = n and deg(g) < m (or if deg(f) < n and deg(g) = m) then it is still
the case that f and g have a non-constant common factor if and only if res n,m(f, g) = 0,
but if deg(f) < n and deg(g) < m then res n,m(f, g) = 0.

9.8 Note: Recall (or verify) that, when F is any field, a polynomial f ∈ F[x] has a
repeated root (in its splitting field) if and only if f and its derivative f ′ have a non-
constant common factor. From the above note, when deg(f) = ` this occurs if and only if
res `,`−1(f, f ′) = 0. For f ∈ F[x] with deg(f) ≤ ` we define the degree ` discriminant of
f to be

disc `(f) = res `,`−1(f, f ′).

Note that when deg(f) < ` we have disc `(f) = 0.

9.9 Definition: When X is an affine algebraic variety, we say that a property holds
generically in X when the property holds at every point in some dense open set U ⊆ X.
For example, when X and Y are affine varieties and f : Y → X is dominant polynomial or
rational map, we say that f is generically d : 1 when there is a dense open subset U ⊆ X
such that for every point a ∈ U the fibre f−1(a) contains exactly d points.
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9.10 Theorem: Let F be an algebraically closed field, let X ⊆ Fn and Y ⊆ Fm be
irreducible varieties, and let f : Y → X be a dominant polynomial map.

(1) If K(Y ) is transcendental over f∗
(
K(X)

)
then f is generically ∞ : 1.

(2) If K(Y ) is algebraic over f∗
(
K(X)

)
then f is generically d : 1 where

d =
[
K(Y ) : f∗

(
K(X)

)]
.

Proof: First let us consider a special case. Suppose that X ⊆ Fn and Y ⊆ Fn+1 and
that f : Y → X is the projection map given by f(x, y) = x where x = (x1, x2, · · · , xn).
Let uk(x) = xk ∈ A(X), let vk(x, y) = xk ∈ A(Y ), let w(x, y) = y ∈ A(Y ), and write
u = (u1, · · · , un) and v = (v1, · · · , vn). Then we have A(X) = F[u] = F[u1, · · · , un] and
A(Y ) = F[v, w] = F[v1, · · · , vn, w]. Note that the pullback f∗ : A(X) → A(Y ) is given
by f∗(g)(x, y) = g(f(x, y)

)
= g(x), so we have f∗

(
A(X)

)
= F[v] and the isomorphism

f∗ : A(X) = F[u] → f∗
(
A(X)

)
= F[v] is the natural map given by f∗(uk) = vk for each

index k.
Note that the element w ∈ A(Y ) can either be transcendental or algebraic over

f∗(K(X)) = F(v). If w is transcendental over F(v) then A(Y ) is isomorphic to the
polynomial ring F[v][y] ∼= A(X)[y] ∼= A(X ×F) and, in this case, we have Y ∼= X ×F and,
indeed we must have Y = X × F and f−1(a) = {a} × F for all a ∈ X. Thus, in the case
that w is transcendental over f∗

(
K(X)

)
= F(v), the map f is (globally) ∞ : 1.

Suppose that w is algebraic over F(u). Let p(v, y) = p(v)(y) be the minimal poly-
nomial of w ∈ A(Y ) over F(v), multiplied by the least common denominator so that
p(v)(y) ∈ F[v][y]. The polynomial p(v, y) ∈ F[v][y] is given by (or extends to) a polynomial
p(x, y) ∈ F[x, y]. We claim that Y = V (p) ∩ (X × F). Since p(v, w) = 0 ∈ A(Y ) it follows
that p(a, b) = 0 for all (a, b) ∈ Y , and so we have p ∈ I(Y ) and hence Y ⊆ V (p). Since the
projection f(x, y) = x maps X to Y , we also have Y ⊆ X×F, and so Y ⊆ V (p)∩ (X×F).
Let g = g(x, y) ∈ I(Y ). Then, since g = 0 ∈ A(Y ) we have g(v, w) = 0 ∈ A(Y ), and
so w is a root of g(v)(y) ∈ F[v][y]. Since p is the minimal polynomial of w over F(v) it
follows that p(v)(y)

∣∣g(v)(y) in F[v][y]. Using the isomorphism f∗ : F[u]→ F[v] we see that

p(u)(y)
∣∣g(u)(y) in F[u][y] = A(X)[y], say g(u)(y) = p(u)(y)k(u)(y) ∈ A(X)[y] ∼= A(X×F).

Represent k(u)(y) by a polynomial k(x, y) and note that g(x, y)−p(x, y)k(x, y) ∈ I(X×F ).
Thus we have g ∈ 〈p〉+ I(X ×F). This shows that I(Y ) ⊆ 〈p〉+ I(X ×F). It follows that
V (p) ∩ (X × F) = V

(
〈p〉+ I(X × F)

)
⊆ Y . Thus Y = V (p) ∩ (X × F), as claimed.

Write p(x, t) = p0(x) + p1(x) + · · ·+ p`(x)t` with each pk(x) ∈ F[x] and p`(x) 6∈ I(X).
Since Y = V (p), for each point a ∈ X = Fn, the fiber f−1(a) is equal to the set of all pairs
(a, b) ∈ Fn+1 for which b is a root of the polynomial p(a)(t) ∈ F[t]. When F is algebraically
closed, the fiber f−1(a) contains exactly ` points when the polynomial p(a)(t) has exactly
` distinct roots, that is when disc `

(
p(a)

)
6= 0. Let U =

{
x ∈ X

∣∣ res `

(
p(x)

)
6= 0

}
.

Note that disc `

(
p(x)

)
is a polynomial in x = (x1, · · · , xn) so U is open in X. Also

note that U 6= ∅ because if we had res `(p(x)
)

= 0 for all x ∈ Fn then we would have

res `

(
p(u)

)
= 0 ∈ A(X) = F[u] hence res `

(
p(v)

)
= 0 ∈ F[v], but then p(v)(y) and p(v)′(y)

would have a non-constant common factor in F[v][t], and hence p(v)(y) would be reducible.
Thus, in the case that w is algebraic over f∗

(
K(X)

)
= F(v), the map f is generically ` : 1

where
` = deg p(v)(y) =

[
F(v)[y] : F(v)

]
=
[
K(Y ) : f∗

(
K(X)

)]
.

This completes the proof of the theorem in the special case that X ⊆ Fn and Y ⊆ Fn+1

and f : Y → X is the projection map f(x, y) = x.
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Now consider the general case. Suppose X ⊆ Fn, Y ⊆ Fm and f : Y → X is any
dominant polynomial map. Let uk(x) = xk ∈ A(X) so that A(X) = F[u] = F[u1, · · · , un].
Let wk(y) = yk ∈ A(Y ) so that A(Y ) = F[w1, · · · , wm]. Say f(y) =

(
f1(y), · · · , fn(y)

)
and

let vk(y) = fk(y) ∈ A(Y ). Note that f∗(uk)(y) = uk
(
f(y)

)
= fk(y) = vk(y) so we have

f∗
(
A(X)

)
= f∗

(
F[u]

)
= F[v] and the map f∗ : F[u] → F[v] is given by f∗(uk) = vk. We

have A(Y ) = F[w1, · · · , wm] = f∗
(
A(X)

)
[w1, · · · , wm] = F[v1, · · · , vn][w1, · · · , wm].

Suppose that A(Y ) is algebraic over f∗
(
A(X)

)
. We have a tower of integral domains

AX ∼= f∗
(
A(X)

)
= F[v] ⊆ F[v][w1] ⊆ F[v][w1, w2] ⊆ · · · ⊆ F[v][w1, · · · , wm] = A(Y ).

At each stage, wk is algebraic over the previous quotient field F(v)[w1, · · · , wk−1]. We
obtain, correspondingly, a chain of irreducible varieties Xk ⊆ Fn+k and projection maps
fk : Xk → Xk−1, as in the special case studied above,

X = X0 ←− X1 ←− X2 ←− · · · ←− Xm−1 ←− Xm
∼= Y.

At each stage, we have Xk = V (pk) ∩ (Xk−1 × F) where pk ∈ F[x1, · · · , xn, y1, · · · , yk]
is a polynomial such that pk(v, w1, · · · , wk−1, y) is the minimal polynomial of wk over
F(v)[w1, · · · , wk−1], and we have a natural isomorphism φk : A(Xk)→ F[v][w1, · · · , wk] of
F-algebras. The given dominant polynomial map f : Y → X is equal to the composite
f = f1 ◦ f2 ◦ · · · ◦ fm ◦ g where g : Y → Xm is the polynomial isomorphism for which
g∗ = φm : A(Xm)→ A(Y ). Each projection map fk is generically `k : 1 where

`k = deg(pk) =
[
F(v)[w1, · · · , wk] : F(v)[w1, · · · , wk−1]

]
,

and we have d =
[
K(Y ) : f∗

(
K(X)

)]
= `1`2 · · · `m.

We need to show that the composite f1 ◦f2 ◦ · · · ◦fm is generically d : 1. By induction,
it suffices to show that fk ◦ fk+1 is generically `k`k+1 : 1. Let Uk−1 ⊆ Xk−1 and Uk ⊆ Xk

be dense open subsets such that fk
−1(a) contains exactly `k points for every a ∈ Uk−1 and

fk+1
−1(b) contains exactly `k+1 points for every b ∈ Uk. Let Uk

c = Xk \Uk and note that
Uk

c is a closed subvariety of Xk. For a ∈ Uk−1 \ f(Uk
c), the fibre fk

−1(a) contains exactly
`k points and we have fk

−1(a) ⊆ Uk and so the set fk+1
−1(fk−1(a)

)
contains exactly

`k`k+1 points. Thus it suffices to show that Xk−1 \ f(Uk
c) contains a dense open set in

Xk−1 or, equivalently, to show that f(Uk
c) ⊂6= Xk−1. We do this by comparing dimensions.

First note that since wk is algebraic over F(v)[w1, · · · , wk−1] we have

dim(Xk) = trans
F
F(v)[w1, · · · , wk] = trans

F
F(v)[w1, · · · , wk−1] = dim(Xk−1).

Since Uk 6= ∅ we have Uk
c ⊂6= Xk so dim(Uk

c) < dim(Xk) = dim(Xk−1). Since the map

fk : Uk
c → fk(Uk

c) is surjective, it follows that the map fk : Uk
c → fk(Uk

c) is dominant, so
we have dim

(
fk(Uk

c)
)
≤ dim(Uk

c) < dim(Xk−1), and hence fk(Uk
c) ⊂6= Xk−1, as required.

Suppose, finally, that K(Y ) is transcendental over f∗
(
K(X)

)
. Reorder the variables,

if necessary, so that {w1, · · · , wr} is a transcendence basis for K(Y ) = F(v)(w1, · · · , wm)
over f∗

(
K(X)

)
= F(v). Form the corresponding chain of varieties Xk and projection

maps fk : Xk → Xk−1, as above. For 1 ≤ k ≤ r we have Xk = Xk−1 × F and fk is
(globally) ∞ : 1, and for r < k ≤ m the map fk is generically `k : 1. Thus the composite
f1 ◦ · · · ◦ fr is (globally) ∞ : 1 and the composite fr+1 ◦ · · · ◦ fm is generically d : 1
where d = `r+1`r+2 · · · `m, and so f1 · · · ◦ fm (hence also the original dominant map f) is
generically ∞ : 1.
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9.11 Corollary: Let F be algebraically closed, let X ⊆ Fn and Y ⊆ Fm be irreducible
varieties, and let f : Y → X be a dominant polynomial map. If A(X) is integral over
f∗
(
A(Y )

)
then f is surjective and finite :1.

Proof: This result can be extracted from the proof of the above theorem. Using the
notation of the proof, in the case that X ⊆ Fn, Y ∈ Fn+1, A(X) = F[u] = F[u1, · · · , un],
and A(Y ) = F[v] = F[v1, · · · , vn, w], recall that Y = V (p) ∩ (X × F) ⊆ Fn+1 where
p(x, y) ∈ F[x, y] and p(v)(y) is the minimal polynomial of w over f∗

(
A(X)

)
= F(v). For

p(x, t) = p0(x) + p1(x)t + · · · + p`(x)t` with p`(v) 6= 0 ∈ F[v], if A(Y ) is integral over
f∗
(
A(X)

)
= F[v], then we have p`(v) = 1 ∈ F[v] and hence p`(u) = 1 ∈ F[u] = A(X).

Then for all a ∈ X we have p`(a) = 1, so the polynomial p(a) ∈ F[y] is of degree `, for
every a ∈ X. It follows that the fibre f−1(a) =

{
(a, y)

∣∣p(a)(y) = 0
}

always has at least 1
and at most ` elements, for every a ∈ X.

9.12 Corollary: Let F be an algebraically closed and let X be an irreducible affine
variety. Then dim(X) = d if and only if there exists a surjective finite : 1 polynomial map
f : X → Fd if and only if there exists a dominant generically finite : 1 polynomial map
f : X → Fd.

Proof: Suppose that dim(X) = d. By Noether’s Normalization Lemma, we can choose
u1, · · · , ud ∈ A(X) such that {u1, · · · , ud} is algebraically independent (so it is a transcen-
dence basis for K(X) over F) and A(X) is integral over F[u1, · · · , ud]. Since {u1, · · · , ud}
is algebraically independent, the F-algebra homomorphism φ : F[t1, · · · , td] → AX given
by φ(tk) = uk is injective. Let f : X → Fd be the dominant polynomial map with
f∗ = φ. Since AX is integral over f∗

(
F[t1, · · · , td]

)
= F[u1, · · · , ud] it follows from the

above theorem that f is surjective and finite :1.
Suppose, on the other hand, that f : X → Fd is a dominant and generically finite : 1

polynomial map. Then, by the above theorem, K(Fd) is algebraic over f∗
(
K(X)

)
and so

dim(X) = trans
F
K(X) = trans

F
f∗
(
K(X)

)
= trans

F
K(Fd) = dim(Fd) = d.

9.13 Corollary: Let F be an algebraically closed field, and let X and Y be affine varieties
with Y irreducible and with X ⊂6= Y . Then there exists an irreducible variety Z with

X ⊆ Z ⊂6= Y such that dim(Z) = dim(Y )− 1.

Proof: Let d = dimY . Since every irreducible component of X is a proper subvariety of Y ,
we have dimX < dimY = d. Let f : Y → Fd be a surjective and finite :1 polynomial map.
Then f : X → f(X) ⊆ Fd is surjective and finite : 1, and so f : X → f(X) is dominant
and generically finite :1. It follows that dim f(X) = dim(X) < d and so f(X) ⊂6= Fd. Since

f(X) ⊂6= Fd we have {0} = I(Fd) ⊂6= I
(
f(X)

)
so we can choose 0 6= g ∈ I

(
f(X)

)
. Then

we have f(X) ⊆ V (g) ⊂6= Fd. Let Z = f−1
(
V (g)

)
⊆ Y . Since f : Z → f(Z) = V (g) is

surjective and finite : 1, we have dimZ = dimV (g) = d − 1. Since f(X) ⊆ f(X) ⊆ V (g)
we have X = f−1

(
f(X)

)
⊆ f−1

(
V (g)

)
= Z.

9.14 Corollary: Let F be an algebraically closed field, and let X be an irreducible affine
variety. Then dim(X) is equal to the length ` of the longest chain of irreducible varieties
∅ 6= X0

⊂6= X1
⊂6= · · · ⊂6= X` = X or, equivalently, the length ` of the longest chain of prime

ideals {0} = P`
⊂6= P`−1 ⊂6= · · · ⊂6= P1

⊂6= P0
⊂6= A(X).

Proof: This follows from the above corollary together with Corollary 9.4.
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