

9. Dimension

9.1 Definition: For an irreducible variety $X \subseteq \mathbf{R}^n$, we define the **dimension** of X to be

$$\dim(X) = \text{trans}_{\mathbf{F}} K(X).$$

For a reducible variety $X \subseteq \mathbf{F}^n$, we define the **dimension** of X to be the maximum of the dimensions of the irreducible components of X . We say that X has **pure dimension** when all of the irreducible components of X have the same dimension.

9.2 Example: When $a \in \mathbf{F}^n$ we have $\dim\{a\} = 0$ and, when \mathbf{F} is infinite, $\dim(\mathbf{F}^n) = n$.

9.3 Theorem: Let X and Y be irreducible affine varieties with $X \subseteq Y \subseteq \mathbf{F}^n$. Then $\dim(X) \leq \dim(Y)$ with $\dim(X) = \dim(Y) \iff X = Y$.

Proof: Let $r = \dim(X) = \text{trans}_{\mathbf{F}} K(X)$. Reorder the variables x_k , if necessary, so that $\{x_1, \dots, x_r\} \subseteq A(X) \subseteq K(X)$ is a transcendence basis for $K(X)$ over \mathbf{F} . Suppose, for a contradiction, that $\{x_1, \dots, x_r\} \subseteq A(Y) \subseteq K(Y)$ is algebraically dependent over \mathbf{F} . Choose $0 \neq g \in \mathbf{F}[t_1, \dots, t_r]$ such that $g(x_1, \dots, x_r) = 0 \in A(Y) \subseteq K(Y)$. Then $g(x_1, \dots, x_r)$ is equal to zero as a function from Y to \mathbf{F} . Since $X \subseteq Y$, it follows that $g(x_1, \dots, x_r)$ is also equal to zero as a function from X to \mathbf{F} , so we have $0 = g(x_1, \dots, x_r) \in A(X) \subseteq K(X)$. But then $\{x_1, \dots, x_r\} \subseteq K(X)$ is algebraically dependent, which contradicts the fact that $\{x_1, \dots, x_r\}$ is a transcendence basis for $K(X)$ over \mathbf{F} . Thus $\{x_1, \dots, x_r\} \subseteq K(Y)$ is algebraically independent, as claimed, and so $\dim(Y) = \text{trans}_{\mathbf{F}} K(Y) \geq r = \dim(X)$.

Suppose, for a contradiction, that $\dim(X) = \dim(Y) = r$ but that $X \not\subseteq Y$. Reorder the variables x_k , if necessary, so that $\{x_1, \dots, x_r\} \subseteq A(X) \subseteq K(X)$ is a transcendence basis for $K(X)$ over \mathbf{F} . Then, as shown above, $\{x_1, \dots, x_r\} \subseteq A(Y) \subseteq K(Y)$ is also a transcendence basis for $K(Y)$ over \mathbf{F} . Since $X \not\subseteq Y$ we have $I(Y) \not\subseteq I(X)$ so we can choose $u \in I(X)$ with $u \notin I(Y)$. Then we have $u = 0 \in A(X)$ and $u \neq 0 \in A(Y)$. Since $\{x_1, \dots, x_r\}$ is a transcendence basis for $K(Y)$ over \mathbf{F} , it follows that u is algebraic over $\mathbf{F}(x_1, \dots, x_r) \subseteq K(Y)$. Let p be the minimal polynomial for u over $\mathbf{F}(x_1, \dots, x_r) \subseteq K(Y)$ multiplied by the least common denominator so that p is an irreducible polynomial in $\mathbf{F}[x_1, \dots, x_r][t] \subseteq A(Y)[t]$. Write

$$p(t) = p_0(x_1, \dots, x_r) + p_1(x_1, \dots, x_r)t + \dots + p_\ell(x_1, \dots, x_r)t^\ell.$$

Since $p(t)$ is irreducible in $A(Y)[t]$, we must have $0 \neq p_0(x_1, \dots, x_r) \in A(Y)$ hence also $0 \neq p(x_1, \dots, x_r) \in \mathbf{F}[x_1, \dots, x_r]$ as a polynomial, because $\{x_1, \dots, x_r\} \subseteq A(Y) \subseteq K(Y)$ is algebraically independent. Since $p(u) = 0 \in A(Y)$ and $X \subseteq Y$, we also have $p(u) = 0 \in A(X)$. Since $u = 0 \in A(X)$ we have $0 = p(u) = p_0(x_1, \dots, x_r) \in A(X)$, hence also $0 = p(x_1, \dots, x_r) \in \mathbf{F}[x_1, \dots, x_r]$ as a polynomial, because $\{x_1, \dots, x_r\} \subseteq A(X) \subseteq K(X)$ is algebraically independent. Thus we have obtained the desired contradiction.

9.4 Corollary: Let \mathbf{F} be an algebraically closed field and let $X \subseteq \mathbf{F}^n$ be an irreducible variety. The $\dim(X) \geq \ell$ where ℓ is the length of the longest chain of irreducible subvarieties $X_0 \not\subseteq X_1 \not\subseteq X_2 \not\subseteq \dots \not\subseteq X_\ell = X$ or, equivalently, the length of the longest chain of prime ideals $0 = P_\ell \not\subseteq P_{\ell-1} \not\subseteq \dots \not\subseteq P_1 \not\subseteq P_0 \not\subseteq A(X)$.

9.5 Theorem: (Hypersurfaces) Let \mathbf{F} be an algebraically closed field, and let $X \subseteq \mathbf{F}^n$ be an irreducible variety. Then $\dim(X) = n - 1$ if and only if $X = V(f)$ for some irreducible polynomial $f \in \mathbf{F}[x_1, \dots, x_n]$.

Proof: Suppose that $\dim(X) = n - 1$. Since $X \subseteq \mathbf{F}^n$ and $\dim(X) \neq \dim(\mathbf{F}^n)$ we have $X \not\subseteq \mathbf{F}^n$ and so $\{0\} = I(\mathbf{F}^n) \not\subseteq I(X)$. Choose $0 \neq g \in I(X)$. Note that g is non-constant since $X \neq \emptyset$. Say $g = p_1^{k_1} \cdots p_\ell^{k_\ell}$ where the p_k are non-associate irreducible polynomials in $\mathbf{F}[x_1, \dots, x_n]$. Since $f = p_1^{k_1} \cdots p_k^{k_\ell} \in I(X)$ and X is irreducible so that $I(X)$ is prime, it follows that $p_j \in I(X)$ for some index j , say $f = p_k \in I(X)$. Since $f \in I(X)$ we have $X \subseteq V(f)$. We claim that $X = V(f)$. Since f is irreducible and \mathbf{F} is algebraically closed, it follows that $V(f)$ is irreducible. Since $X \subseteq V(f) \not\subseteq \mathbf{F}^n$ we have $n - 1 = \dim(X) \leq \dim V(f) < \dim(\mathbf{F}^n) = n$ and so $\dim V(f) = n - 1$. Since X and $V(f)$ are irreducible with $X \subseteq V(f)$ and $\dim(X) = \dim V(f)$, we have $X = V(f)$, as claimed.

Suppose, conversely, that $X = V(f)$ where $f \in \mathbf{F}[x_1, \dots, x_n]$ is irreducible. Since \mathbf{F} is algebraically closed, we know that $X = V(f)$ is irreducible and that $I(X) = \langle f \rangle$. One of the variables x_k must occur (in a term with a nonzero coefficient) in the polynomial f . Reorder the variables, if necessary, so that x_n occurs in f , say

$$f(x_1, \dots, x_n) = f_0(x_1, \dots, x_{n-1}) + f_1(x_1, \dots, x_{n-1})x_n + \cdots + f_\ell(x_1, \dots, x_{n-1})x_n^\ell.$$

Since $f \in I(X)$ so that $f = 0 \in A(X)$, we see that the element $x_n \in A(X)$ is a root of the polynomial $g(t) = f_0(x_1, \dots, x_{n-1}) + \cdots + f_\ell(x_1, \dots, x_{n-1})t^\ell$ and so x_n is algebraic over $\mathbf{F}(x_1, \dots, x_{n-1}) \subseteq K(X)$, and hence we must have $\dim(X) \leq n - 1$. Suppose, for a contradiction, that $\dim(X) < n - 1$. Then $\{x_1, \dots, x_{n-1}\} \subseteq A(X) \subseteq K(X)$ is algebraically dependent over \mathbf{F} so we can choose a nonzero polynomial $0 \neq g \in \mathbf{F}[x_1, \dots, x_{n-1}]$ such that $g(x_1, \dots, x_{n-1}) = 0 \in A(X) \subseteq K(X)$ (so g is not zero as a polynomial, but g is zero as a function on X). Since $g = 0 \in A(X)$ we have $g \in I(X) = \langle f \rangle$ and so $f|g$ in the polynomial ring $\mathbf{F}[x_1, \dots, x_n]$. This is not possible since x_n occurs in f but x_n does not occur in g . Thus we must have $\dim(X) = n - 1$, as required.

9.6 Definition: A **hypersurface** in \mathbf{F}^n is a variety $X \subseteq \mathbf{F}^n$ such that every irreducible component of X has dimension $n - 1$. When \mathbf{F} is algebraically closed, it follows from the above theorem that a hypersurface in \mathbf{F}^n is any variety of the form $X = V(f) \subseteq \mathbf{F}^n$ for some non-constant polynomial $f \in \mathbf{F}[x_1, \dots, x_n]$. In this case, when $f = p_1^{k_1}p_2^{k_2} \cdots p_\ell^{k_\ell}$ where the p_k are non-associate irreducible polynomials, the irreducible components of X are the varieties $X_k = V(p_k)$ and we have $I(X) = \sqrt{\langle f \rangle} = \langle p_1p_2 \cdots p_\ell \rangle$.

9.7 Note: Recall (or verify) that, when R is an integral domain, two non-constant polynomials $f, g \in R[x]$ have a non-constant common factor when there exist non-zero polynomials $u, v \in R[x]$ with $\deg(v) < \deg(f)$ (or equivalently with $\deg(u) < \deg(g)$) such that $fu + gv = 0 \in R[x]$. Note that the equation $fu + gv = 0$ can be written in matrix form as follows. If $f(x) = \sum_{k=0}^n a_k x^k$ with $a_n \neq 0$ and $g(x) = \sum_{k=0}^m b_k x^k$ with $b_m \neq 0$, and $u = \sum_{k=0}^{m-1} u_k x^k$ and $v = \sum_{k=0}^{n-1} v_k x^k$ then, considering u, v and $fu + gv$ as elements in R^m, R^n and R^{n+m} , the equation $fu + gv = 0$ can be written as

$$\begin{pmatrix} a_0 & 0 & \cdots & 0 & b_0 & 0 & \cdots & 0 \\ a_1 & a_0 & & 0 & b_1 & b_0 & & 0 \\ \vdots & & \ddots & \vdots & \vdots & & \ddots & \vdots \\ a_n & & & a_0 & b_n & & & b_0 \\ 0 & a_n & & a_1 & 0 & b_n & & b_1 \\ \vdots & & \ddots & \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & a_n & 0 & 0 & \cdots & b_n \end{pmatrix} \begin{pmatrix} u_0 \\ u_1 \\ \vdots \\ u_m \\ v_0 \\ v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

The matrix on the left is denoted by $R_{n,m}(f, g)$. It is called the **resultant matrix** of f and g , and it has m columns involving the coefficients a_k of f and m columns involving the b_k of g . It follows from the above discussion that f and g have a non-constant common factor if and only if $\det R_{n,m}(f, g) = 0$. We define the **resultant** of f and g to be

$$\text{res}_{n,m}(f, g) = \det_{n,m} R(f, g).$$

Note that if $\deg(f) = n$ and $\deg(g) < m$ (or if $\deg(f) < n$ and $\deg(g) = m$) then it is still the case that f and g have a non-constant common factor if and only if $\text{res}_{n,m}(f, g) = 0$, but if $\deg(f) < n$ and $\deg(g) < m$ then $\text{res}_{n,m}(f, g) = 0$.

9.8 Note: Recall (or verify) that, when \mathbf{F} is any field, a polynomial $f \in \mathbf{F}[x]$ has a repeated root (in its splitting field) if and only if f and its derivative f' have a non-constant common factor. From the above note, when $\deg(f) = \ell$ this occurs if and only if $\text{res}_{\ell, \ell-1}(f, f') = 0$. For $f \in \mathbf{F}[x]$ with $\deg(f) \leq \ell$ we define the degree ℓ **discriminant** of f to be

$$\text{disc}_\ell(f) = \text{res}_{\ell, \ell-1}(f, f').$$

Note that when $\deg(f) < \ell$ we have $\text{disc}_\ell(f) = 0$.

9.9 Definition: When X is an affine algebraic variety, we say that a property holds **generically** in X when the property holds at every point in some dense open set $U \subseteq X$. For example, when X and Y are affine varieties and $f : Y \rightarrow X$ is dominant polynomial or rational map, we say that f is generically $d : 1$ when there is a dense open subset $U \subseteq X$ such that for every point $a \in U$ the fibre $f^{-1}(a)$ contains exactly d points.

9.10 Theorem: Let \mathbf{F} be an algebraically closed field, let $X \subseteq \mathbf{F}^n$ and $Y \subseteq \mathbf{F}^{n+1}$ be irreducible varieties, and let $f : Y \rightarrow X$ be a dominant polynomial map.

- (1) If $K(Y)$ is transcendental over $f^*(K(X))$ then f is generically $\infty : 1$.
- (2) If $K(Y)$ is algebraic over $f^*(K(X))$ then f is generically $d : 1$ where

$$d = [K(Y) : f^*(K(X))].$$

Proof: First let us consider a special case. Suppose that $X \subseteq \mathbf{F}^n$ and $Y \subseteq \mathbf{F}^{n+1}$ and that $f : Y \rightarrow X$ is the projection map given by $f(x, y) = x$ where $x = (x_1, x_2, \dots, x_n)$. Let $u_k(x) = x_k \in A(X)$, let $v_k(x, y) = x_k \in A(Y)$, let $w(x, y) = y \in A(Y)$, and write $u = (u_1, \dots, u_n)$ and $v = (v_1, \dots, v_n)$. Then we have $A(X) = \mathbf{F}[u] = \mathbf{F}[u_1, \dots, u_n]$ and $A(Y) = \mathbf{F}[v, w] = \mathbf{F}[v_1, \dots, v_n, w]$. Note that the pullback $f^* : A(X) \rightarrow A(Y)$ is given by $f^*(g)(x, y) = g(f(x, y)) = g(x)$, so we have $f^*(A(X)) = \mathbf{F}[v]$ and the isomorphism $f^* : A(X) = \mathbf{F}[u] \rightarrow f^*(A(X)) = \mathbf{F}[v]$ is the natural map given by $f^*(u_k) = v_k$ for each index k .

Note that the element $w \in A(Y)$ can either be transcendental or algebraic over $f^*(K(X)) = \mathbf{F}(v)$. If w is transcendental over $\mathbf{F}(v)$ then $A(Y)$ is isomorphic to the polynomial ring $\mathbf{F}[v][y] \cong A(X)[y] \cong A(X \times \mathbf{F})$ and, in this case, we have $Y \cong X \times \mathbf{F}$ and, indeed we must have $Y = X \times \mathbf{F}$ and $f^{-1}(a) = \{a\} \times \mathbf{F}$ for all $a \in X$. Thus, in the case that w is transcendental over $f^*(K(X)) = \mathbf{F}(v)$, the map f is (globally) $\infty : 1$.

Suppose that w is algebraic over $\mathbf{F}(v)$. Let $p(v, y) = p(v)(y)$ be the minimal polynomial of $w \in A(Y)$ over $\mathbf{F}(v)$, multiplied by the least common denominator so that $p(v)(y) \in \mathbf{F}[v][y]$. The polynomial $p(v, y) \in \mathbf{F}[v][y]$ is given by (or extends to) a polynomial $p(x, y) \in \mathbf{F}[x, y]$. We claim that $Y = V(p) \cap (X \times \mathbf{F})$. Since $p(v, w) = 0 \in A(Y)$ it follows that $p(a, b) = 0$ for all $(a, b) \in Y$, and so we have $p \in I(Y)$ and hence $Y \subseteq V(p)$. Since the projection $f(x, y) = x$ maps X to Y , we also have $Y \subseteq X \times \mathbf{F}$, and so $Y \subseteq V(p) \cap (X \times \mathbf{F})$. Let $g = g(x, y) \in I(Y)$. Then, since $g = 0 \in A(Y)$ we have $g(v, w) = 0 \in A(Y)$, and so w is a root of $g(v)(y) \in \mathbf{F}[v][y]$. Since p is the minimal polynomial of w over $\mathbf{F}(v)$ it follows that $p(v)(y) \mid g(v)(y)$ in $\mathbf{F}[v][y]$. Using the isomorphism $f^* : \mathbf{F}[u] \rightarrow \mathbf{F}[v]$ we see that $p(u)(y) \mid g(u)(y)$ in $\mathbf{F}[u][y] = A(X)[y]$, say $g(u)(y) = p(u)(y)k(u)(y) \in A(X)[y] \cong A(X \times \mathbf{F})$. Represent $k(u)(y)$ by a polynomial $k(x, y)$ and note that $g(x, y) - p(x, y)k(x, y) \in I(X \times \mathbf{F})$. Thus we have $g \in \langle p \rangle + I(X \times \mathbf{F})$. This shows that $I(Y) \subseteq \langle p \rangle + I(X \times \mathbf{F})$. It follows that $V(p) \cap (X \times \mathbf{F}) = V(\langle p \rangle + I(X \times \mathbf{F})) \subseteq Y$. Thus $Y = V(p) \cap (X \times \mathbf{F})$, as claimed.

Write $p(x, t) = p_0(x) + p_1(x) + \dots + p_\ell(x)t^\ell$ with each $p_k(x) \in \mathbf{F}[x]$ and $p_\ell(x) \notin I(X)$. Since $Y = V(p)$, for each point $a \in X = \mathbf{F}^n$, the fiber $f^{-1}(a)$ is equal to the set of all pairs $(a, b) \in \mathbf{F}^{n+1}$ for which b is a root of the polynomial $p(a)(t) \in \mathbf{F}[t]$. When \mathbf{F} is algebraically closed, the fiber $f^{-1}(a)$ contains exactly ℓ points when the polynomial $p(a)(t)$ has exactly ℓ distinct roots, that is when $\text{disc}_\ell(p(a)) \neq 0$. Let $U = \{x \in X \mid \text{res}_\ell(p(x)) \neq 0\}$. Note that $\text{disc}_\ell(p(x))$ is a polynomial in $x = (x_1, \dots, x_n)$ so U is open in X . Also note that $U \neq \emptyset$ because if we had $\text{res}_\ell(p(x)) = 0$ for all $x \in \mathbf{F}^n$ then we would have $\text{res}_\ell(p(u)) = 0 \in A(X) = \mathbf{F}[u]$ hence $\text{res}_\ell(p(v)) = 0 \in \mathbf{F}[v]$, but then $p(v)(y)$ and $p(v)'(y)$ would have a non-constant common factor in $\mathbf{F}[v][t]$, and hence $p(v)(y)$ would be reducible. Thus, in the case that w is algebraic over $f^*(K(X)) = \mathbf{F}(v)$, the map f is generically $\ell : 1$ where

$$\ell = \deg p(v)(y) = [\mathbf{F}(v)[y] : \mathbf{F}(v)] = [K(Y) : f^*(K(X))].$$

This completes the proof of the theorem in the special case that $X \subseteq \mathbf{F}^n$ and $Y \subseteq \mathbf{F}^{n+1}$ and $f : Y \rightarrow X$ is the projection map $f(x, y) = x$.

Now consider the general case. Suppose $X \subseteq \mathbf{F}^n$, $Y \subseteq \mathbf{F}^m$ and $f : Y \rightarrow X$ is any dominant polynomial map. Let $u_k(x) = x_k \in A(X)$ so that $A(X) = \mathbf{F}[u] = \mathbf{F}[u_1, \dots, u_n]$. Let $w_k(y) = y_k \in A(Y)$ so that $A(Y) = \mathbf{F}[w_1, \dots, w_m]$. Say $f(y) = (f_1(y), \dots, f_n(y))$ and let $v_k(y) = f_k(y) \in A(Y)$. Note that $f^*(u_k)(y) = u_k(f(y)) = f_k(y) = v_k(y)$ so we have $f^*(A(X)) = f^*(\mathbf{F}[u]) = \mathbf{F}[v]$ and the map $f^* : \mathbf{F}[u] \rightarrow \mathbf{F}[v]$ is given by $f^*(u_k) = v_k$. We have $A(Y) = \mathbf{F}[w_1, \dots, w_m] = f^*(A(X))[w_1, \dots, w_m] = \mathbf{F}[v_1, \dots, v_n][w_1, \dots, w_m]$.

Suppose that $A(Y)$ is algebraic over $f^*(A(X))$. We have a tower of integral domains

$$AX \cong f^*(A(X)) = \mathbf{F}[v] \subseteq \mathbf{F}[v][w_1] \subseteq \mathbf{F}[v][w_1, w_2] \subseteq \dots \subseteq \mathbf{F}[v][w_1, \dots, w_m] = A(Y).$$

At each stage, w_k is algebraic over the previous quotient field $\mathbf{F}(v)[w_1, \dots, w_{k-1}]$. We obtain, correspondingly, a chain of irreducible varieties $X_k \subseteq \mathbf{F}^{n+k}$ and projection maps $f_k : X_k \rightarrow X_{k-1}$, as in the special case studied above,

$$X = X_0 \leftarrow X_1 \leftarrow X_2 \leftarrow \dots \leftarrow X_{m-1} \leftarrow X_m \cong Y.$$

At each stage, we have $X_k = V(p_k) \cap (X_{k-1} \times \mathbf{F})$ where $p_k \in \mathbf{F}[x_1, \dots, x_n, y_1, \dots, y_k]$ is a polynomial such that $p_k(v, w_1, \dots, w_{k-1}, y)$ is the minimal polynomial of w_k over $\mathbf{F}(v)[w_1, \dots, w_{k-1}]$, and we have a natural isomorphism $\phi_k : A(X_k) \rightarrow \mathbf{F}[v][w_1, \dots, w_k]$ of \mathbf{F} -algebras. The given dominant polynomial map $f : Y \rightarrow X$ is equal to the composite $f = f_1 \circ f_2 \circ \dots \circ f_m \circ g$ where $g : Y \rightarrow X_m$ is the polynomial isomorphism for which $g^* = \phi_m : A(X_m) \rightarrow A(Y)$. Each projection map f_k is generically $\ell_k : 1$ where

$$\ell_k = \deg(p_k) = [\mathbf{F}(v)[w_1, \dots, w_k] : \mathbf{F}(v)[w_1, \dots, w_{k-1}]],$$

and we have $d = [K(Y) : f^*(K(X))] = \ell_1 \ell_2 \dots \ell_m$.

We need to show that the composite $f_1 \circ f_2 \circ \dots \circ f_m$ is generically $d : 1$. By induction, it suffices to show that $f_k \circ f_{k+1}$ is generically $\ell_k \ell_{k+1} : 1$. Let $U_{k-1} \subseteq X_{k-1}$ and $U_k \subseteq X_k$ be dense open subsets such that $f_k^{-1}(a)$ contains exactly ℓ_k points for every $a \in U_{k-1}$ and $f_{k+1}^{-1}(b)$ contains exactly ℓ_{k+1} points for every $b \in U_k$. Let $U_k^c = X_k \setminus U_k$ and note that U_k^c is a closed subvariety of X_k . For $a \in U_{k-1} \setminus f(U_k^c)$, the fibre $f_k^{-1}(a)$ contains exactly ℓ_k points and we have $f_k^{-1}(a) \subseteq U_k$ and so the set $f_{k+1}^{-1}(f_k^{-1}(a))$ contains exactly $\ell_k \ell_{k+1}$ points. Thus it suffices to show that $X_{k-1} \setminus f(U_k^c)$ contains a dense open set in X_{k-1} or, equivalently, to show that $\overline{f(U_k^c)} \not\subseteq X_{k-1}$. We do this by comparing dimensions. First note that since w_k is algebraic over $\mathbf{F}(v)[w_1, \dots, w_{k-1}]$ we have

$$\dim(X_k) = \text{trans}_{\mathbf{F}} \mathbf{F}(v)[w_1, \dots, w_k] = \text{trans}_{\mathbf{F}} \mathbf{F}(v)[w_1, \dots, w_{k-1}] = \dim(X_{k-1}).$$

Since $U_k \neq \emptyset$ we have $U_k^c \not\subseteq X_k$ so $\dim(U_k^c) < \dim(X_k) = \dim(X_{k-1})$. Since the map $f_k : U_k^c \rightarrow f_k(U_k^c)$ is surjective, it follows that the map $f_k : U_k^c \rightarrow \overline{f_k(U_k^c)}$ is dominant, so we have $\dim(\overline{f_k(U_k^c)}) \leq \dim(U_k^c) < \dim(X_{k-1})$, and hence $\overline{f_k(U_k^c)} \not\subseteq X_{k-1}$, as required.

Suppose, finally, that $K(Y)$ is transcendental over $f^*(K(X))$. Reorder the variables, if necessary, so that $\{w_1, \dots, w_r\}$ is a transcendence basis for $K(Y) = \mathbf{F}(v)(w_1, \dots, w_m)$ over $f^*(K(X)) = \mathbf{F}(v)$. Form the corresponding chain of varieties X_k and projection maps $f_k : X_k \rightarrow X_{k-1}$, as above. For $1 \leq k \leq r$ we have $X_k = X_{k-1} \times \mathbf{F}$ and f_k is (globally) $\infty : 1$, and for $r < k \leq m$ the map f_k is generically $\ell_k : 1$. Thus the composite $f_1 \circ \dots \circ f_r$ is (globally) $\infty : 1$ and the composite $f_{r+1} \circ \dots \circ f_m$ is generically $d : 1$ where $d = \ell_{r+1} \ell_{r+2} \dots \ell_m$, and so $f_1 \circ \dots \circ f_m$ (hence also the original dominant map f) is generically $\infty : 1$.

9.11 Corollary: Let \mathbf{F} be algebraically closed, let $X \subseteq \mathbf{F}^n$ and $Y \subseteq \mathbf{F}^m$ be irreducible varieties, and let $f : Y \rightarrow X$ be a dominant polynomial map. If $A(X)$ is integral over $f^*(A(Y))$ then f is surjective and finite:1.

Proof: This result can be extracted from the proof of the above theorem. Using the notation of the proof, in the case that $X \subseteq \mathbf{F}^n$, $Y \in \mathbf{F}^{n+1}$, $A(X) = \mathbf{F}[u] = \mathbf{F}[u_1, \dots, u_n]$, and $A(Y) = \mathbf{F}[v] = \mathbf{F}[v_1, \dots, v_n, w]$, recall that $Y = V(p) \cap (X \times \mathbf{F}) \subseteq \mathbf{F}^{n+1}$ where $p(x, y) \in \mathbf{F}[x, y]$ and $p(v)(y)$ is the minimal polynomial of w over $f^*(A(X)) = \mathbf{F}(v)$. For $p(x, t) = p_0(x) + p_1(x)t + \dots + p_\ell(x)t^\ell$ with $p_\ell(v) \neq 0 \in \mathbf{F}[v]$, if $A(Y)$ is integral over $f^*(A(X)) = \mathbf{F}[v]$, then we have $p_\ell(v) = 1 \in \mathbf{F}[v]$ and hence $p_\ell(u) = 1 \in \mathbf{F}[u] = A(X)$. Then for all $a \in X$ we have $p_\ell(a) = 1$, so the polynomial $p(a) \in \mathbf{F}[y]$ is of degree ℓ , for every $a \in X$. It follows that the fibre $f^{-1}(a) = \{(a, y) | p(a)(y) = 0\}$ always has at least 1 and at most ℓ elements, for every $a \in X$.

9.12 Corollary: Let \mathbf{F} be an algebraically closed and let X be an irreducible affine variety. Then $\dim(X) = d$ if and only if there exists a surjective finite:1 polynomial map $f : X \rightarrow \mathbf{F}^d$ if and only if there exists a dominant generically finite:1 polynomial map $f : X \rightarrow \mathbf{F}^d$.

Proof: Suppose that $\dim(X) = d$. By Noether's Normalization Lemma, we can choose $u_1, \dots, u_d \in A(X)$ such that $\{u_1, \dots, u_d\}$ is algebraically independent (so it is a transcendence basis for $K(X)$ over \mathbf{F}) and $A(X)$ is integral over $\mathbf{F}[u_1, \dots, u_d]$. Since $\{u_1, \dots, u_d\}$ is algebraically independent, the \mathbf{F} -algebra homomorphism $\phi : \mathbf{F}[t_1, \dots, t_d] \rightarrow AX$ given by $\phi(t_k) = u_k$ is injective. Let $f : X \rightarrow \mathbf{F}^d$ be the dominant polynomial map with $f^* = \phi$. Since AX is integral over $f^*(\mathbf{F}[t_1, \dots, t_d]) = \mathbf{F}[u_1, \dots, u_d]$ it follows from the above theorem that f is surjective and finite:1.

Suppose, on the other hand, that $f : X \rightarrow \mathbf{F}^d$ is a dominant and generically finite:1 polynomial map. Then, by the above theorem, $K(\mathbf{F}^d)$ is algebraic over $f^*(K(X))$ and so

$$\dim(X) = \text{trans}_{\mathbf{F}} K(X) = \text{trans}_{\mathbf{F}} f^*(K(X)) = \text{trans}_{\mathbf{F}} K(\mathbf{F}^d) = \dim(\mathbf{F}^d) = d.$$

9.13 Corollary: Let \mathbf{F} be an algebraically closed field, and let X and Y be affine varieties with Y irreducible and with $X \not\subseteq Y$. Then there exists an irreducible variety Z with $X \subseteq Z \not\subseteq Y$ such that $\dim(Z) = \dim(Y) - 1$.

Proof: Let $d = \dim Y$. Since every irreducible component of X is a proper subvariety of Y , we have $\dim X < \dim Y = d$. Let $f : Y \rightarrow \mathbf{F}^d$ be a surjective and finite:1 polynomial map. Then $f : X \rightarrow f(X) \subseteq \mathbf{F}^d$ is surjective and finite:1, and so $f : X \rightarrow \overline{f(X)}$ is dominant and generically finite:1. It follows that $\dim f(X) = \dim(X) < d$ and so $\overline{f(X)} \not\subseteq \mathbf{F}^d$. Since $\overline{f(X)} \not\subseteq \mathbf{F}^d$ we have $\{0\} = I(\mathbf{F}^d) \not\subseteq I(\overline{f(X)})$ so we can choose $0 \neq g \in I(\overline{f(X)})$. Then we have $\overline{f(X)} \subseteq V(g) \not\subseteq \mathbf{F}^d$. Let $Z = f^{-1}(V(g)) \subseteq Y$. Since $f : Z \rightarrow f(Z) = V(g)$ is surjective and finite:1, we have $\dim Z = \dim V(g) = d - 1$. Since $f(X) \subseteq \overline{f(X)} \subseteq V(g)$ we have $X = f^{-1}(f(X)) \subseteq f^{-1}(V(g)) = Z$.

9.14 Corollary: Let \mathbf{F} be an algebraically closed field, and let X be an irreducible affine variety. Then $\dim(X)$ is equal to the length ℓ of the longest chain of irreducible varieties $\emptyset \neq X_0 \not\subseteq X_1 \not\subseteq \dots \not\subseteq X_\ell = X$ or, equivalently, the length ℓ of the longest chain of prime ideals $\{0\} = P_\ell \not\subseteq P_{\ell-1} \not\subseteq \dots \not\subseteq P_1 \not\subseteq P_0 \not\subseteq A(X)$.

Proof: This follows from the above corollary together with Corollary 9.4.