9. Dimension

9.1 Definition: For an irreducible variety X C R", we define the dimension of X to be
dim(X) = trans K (X).

For a reducible variety X C F", we define the dimension of X to be the maximum of
the dimensions of the irreducible components of X. We say that X has pure dimension
when all of the irreducible components of X have the same dimension.

9.2 Example: When a € F" we have dim{a} = 0 and, when F is infinite, dim(F") = n.

9.3 Theorem: Let X and Y be irreducible affine varieties with X C Y C F™. Then
dim(X) < dim(Y') with dim(X) =dim(Y) <— X =Y.

Proof: Let r = dim(X) = transFK (X). Reorder the variables xj, if necessary, so
that {z1,---,z,} € A(X) C K(X) is a transcendence basis for K(X) over F. Sup-
pose, for a contradiction, that {zq,---, 2.} C A(Y) C K(Y) is algebraically dependent
over F. Choose 0 # g € Flty,---,t,] such that g(z1,---,2,) = 0 € AY) C K(Y).
Then g(x1,---,x,) is equal to zero as a function from Y to F. Since X C Y, it fol-
lows that g(z1,---,x,) is also equal to zero as a function from X to F, so we have
0 = g(z1,--,2,) € AX) C K(X). But then {z1,---,z,} C K(X) is algebraically
dependent, which contradicts the fact that {x1,---,z,} is a transcendence basis for K (X)
over F. Thus {z1,---,2.} C K(Y) is algebraically independent, as claimed, and so
dim(Y') = trans K (V) > r = dim(X).

Suppose, for a contradiction, that dim(X) = dim(Y) = r but that X % Y. Reorder

the variables xy, if necessary, so that {1, -, z.} C A(X) C K(X) is a transcendence
basis for K(X) over F. Then, as shown above, {z1,---,2,} C A(Y) C K(Y) is also
a transcendence basis for K(Y) over F. Since X % Y we have I(Y) % I(X) so we can
choose u € I(X) with u ¢ I(Y). Then we have u =0 € A(X) and u # 0 € A(Y). Since
{x1,---,x,} is a transcendence basis for K(Y') over F, it follows that u is algebraic over
F(x1,---,2,) C K(Y). Let p be the minimal polynomial for u over F(z1,---,z,) C K(Y)
multiplied by the least common denominator so that p is an irreducible polynomial in
Flzy, -, z,][t] € A(Y)[t]. Write
p(t) = po(w1, -, 2) + pr(x1, -, 20 )t + - pe(z1, - - - 7$r)t£-

Since p(t) is irreducible in A(Y)[t], we must have 0 # po(x1,---,x,) € A(Y) hence also
0 # p(x1,---,z,) € Flz1, -+, x| as a polynomial, because {z1,---,z,} C A(Y) C K(Y)
is algebraically independent. Since p(u) = 0 € A(Y) and X C Y, we also have p(u) =
0 € A(X). Since u =0 € A(X) we have 0 = p(u) = po(z1, -+, z,) € A(X), hence also
0=p(x1,--+,2,) € Flz1,---,2,] as a polynomial, because {x1,---,z,.} C A(X) C K(X)
is algebraically independent. Thus we have obtained the desired contradiction.

9.4 Corollary: Let F be an algebraically closed field and let X C F" be an irreducible
variety. The dim(X) > ¢ where ¢ is the length of the longest chain of irreducible subvarieties
Xo % X1 % Xo % % X, = X or, equivalently, the length of the longest chain of prime
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9.5 Theorem: (Hypersurfaces) Let F be an algebraically closed field, and let X C F™ be
an irreducible variety. Then dim(X) = n — 1 if and only if X = V (f) for some irreducible
polynomial f € Flzq, -+, xy,].

Proof: Suppose that dim(X) = n — 1. Since X C F” and dim(X) # dim(F™) we have
X % F" and so {0} = I(F") % I(X). Choose 0 # g € I(X). Note that g is non-

constant since X # 0. Say g = pi** ---p,* where the p; are non-associate irreducible

polynomials in F[z1,---,z,]. Since f = p1* .- p* € I(X) and X is irreducible so that
I(X) is prime, it follows that p; € I(X) for some index j, say f = py € I(X). Since
f € I(X) we have X C V(f). We claim that X = V(f). Since f is irreducible and F
is algebraically closed, it follows that V(f) is irreducible. Since X C V(f) % F" we have
n—1=dim(X) <dimV(f) < dim(F") = n and so dim V(f) =n — 1. Since X and V(f)
are irreducible with X C V(f) and dim(X) = dim V(f), we have X = V(f), as claimed.

Suppose, conversely, that X = V(f) where f € Flz1,---,x,] is irreducible. Since F
is algebraically closed, we know that X = V(f) is irreducible and that I(X) = (f). One
of the variables x; must occur (in a term with a nonzero coefficient) in the polynomial f.
Reorder the variables, if necessary, so that x, occurs in f, say

fl@y, - mn) = folwr, - wn1) + fi(zy, - @n)@n + -+ fol@r, - wp1)wn’

Since f € I(X) so that f =0 € A(X), we see that the element z,, € A(X) is a root of
the polynomial g(t) = fo(x1, -+, Tp_1) + -+ fe(x1, -, 2,_1)t" and so z, is algebraic
over F(z1,--+,2,-1) C K(X), and hence we must have dim(X) < n — 1. Suppose, for a
contradiction, that dim(X) < n—1. Then {x1,---,2,—1} C A(X) C K(X) is algebraically
dependent over F so we can choose a nonzero polynomial 0 # g € F[xy,--+,2,_1] such
that g(x1, -+, 2,-1) =0 € A(X) C K(X) (so g is not zero as a polynomial, but g is zero
as a function on X). Since g = 0 € A(X) we have g € I(X) = (f) and so f|g in the
polynomial ring F[zq,---,x,]. This is not possible since z,, occurs in f but z,, does not
occur in g. Thus we must have dim(X) = n — 1, as required.

9.6 Definition: A hypersurface in F” is a variety X C F" such that every irreducible
component of X has dimension n — 1. When F is algebraically closed, it follows from the
above theorem that a hypersurface in F™ is any variety of the form X = V(f) C F” for
some non-constant polynomial f € Flzy,---,x,]. In this case, when f = piFipyF2 ... p,
where the p; are non-associate irreducible polynomials, the irreducible components of X
are the varieties Xy = V(px) and we have I(X) = \/(f) = (p1p2- - - pe).



9.7 Note: Recall (or verify) that, when R is an integral domain, two non-constant poly-
nomials f,g € R[z] have a non-constant common factor when there exist non-zero poly-
nomials u,v € R[z] with deg(v) < deg(f) (or equivalently with deg(u) < deg(g)) such
that fu+ gv = 0 € R[x]. Note that the equation fu + gv = 0 can be written in matrix

form as follows. If f(z) = 3. ara® with a, # 0 and g(z) = > bra®* with b,, # 0, and

k=0 k=0
m—1 n—1
u= Y wupr® and v = then, considering u, v and fu + gv as elements in R™, R™ and
k=0 k=0

R™™ the equation fu + gv = 0 can be written as

Uo

ao 0O -+ 0 b 0 -+ 0 " 0

a1 ago 0 bl b() 0 '1 0

Qn ag bn bo IL:)m = 0

0 Qp, aq 0 bn bl 0 0

. . . . U1 .

0 0 - an 0 0 - b, : 0
Un

The matrix on the left is denoted by R, »(f,g). It is called the resultant matrix of f
and g, and it has m columns involving the coefficients a; of f and m columns involving
the by of g. It follows from the above discussion that f and g have a non-constant common
factor if and only if det R,, ,,(f, g) = 0. We define the resultant of f and g to be

res n, m(f, g) = det, o, R(f,9).

Note that if deg(f) = n and deg(g) < m (or if deg(f) < n and deg(g) = m) then it is still
the case that f and g have a non-constant common factor if and only if res,, ,,(f,g) =0,
but if deg(f) < n and deg(g) < m then res,, ,,(f,g) =0.

9.8 Note: Recall (or verify) that, when F is any field, a polynomial f € F[z] has a
repeated root (in its splitting field) if and only if f and its derivative f’ have a non-
constant common factor. From the above note, when deg(f) = ¢ this occurs if and only if
resgo—1(f, f') = 0. For f € F[z] with deg(f) < ¢ we define the degree ¢ discriminant of
f to be

disc¢(f) = rese—1(f, f').
Note that when deg(f) < ¢ we have disc,(f) = 0.

9.9 Definition: When X is an affine algebraic variety, we say that a property holds
generically in X when the property holds at every point in some dense open set U C X.
For example, when X and Y are affine varieties and f : Y — X is dominant polynomial or
rational map, we say that f is generically d : 1 when there is a dense open subset U C X
such that for every point a € U the fibre f~1(a) contains exactly d points.



9.10 Theorem: Let F be an algebraically closed field, let X C F" and Y C F™ be
irreducible varieties, and let f : Y — X be a dominant polynomial map.

(1) If K(Y) is transcendental over f*(K (X)) then f is generically oo : 1.
(2) If K(Y) is algebraic over f*(K (X)) then f is generically d : 1 where

d=[K(Y): f*(K(X))].

Proof: First let us consider a special case. Suppose that X C F"® and Y C F"*! and
that f : Y — X is the projection map given by f(z,y) = = where x = (z1, 22, -, Zp).
Let ug(z) = zr € A(X), let vg(z,y) = zr € A(Y), let w(z,y) = y € A(Y), and write
u = (ug, --,up) and v = (v1,---,v,). Then we have A(X) = F[u] = Fluy,---,u,] and
A(Y) = Flv,w| = Flvy,---,v,,w]. Note that the pullback f* : A(X) — A(Y) is given
by f*(g9)(z,y) = g(f (:c,y)) g(z), so we have f*(A(X)) = F[v] and the isomorphism
f* 1 A(X) = Flu] — f*(A(X)) = F[v] is the natural map given by f*(ux) = vy for each
index k.

Note that the element w € A(Y) can either be transcendental or algebraic over
f*(K(X)) = F(v). If w is transcendental over F(v) then A(Y) is isomorphic to the
polynomial ring F[v][y] = A(X)[y] = A(X x F) and, in this case, we have Y = X x F and,
indeed we must have Y = X x F and f~!(a) = {a} x F for all ¢ € X. Thus, in the case
that w is transcendental over f*(K (X)) = F(v), the map f is (globally) oo : 1.

Suppose that w is algebraic over F(u). Let p(v,y) = p(v)(y) be the minimal poly-
nomial of w € A(Y) over F(v), multiplied by the least common denominator so that
p(v)(y) € Fv][y]. The polynomial p(v,y) € F[v][y] is given by (or extends to) a polynomial
p(z,y) € Flz,y]. We claim that Y = V(p) N (X x F). Since p(v,w) =0 € A(Y) it follows
that p(a,b) = 0 for all (a,b) € Y, and so we have p € I(Y') and hence Y C V(p). Since the
projection f(z,y) =x maps X toY, we alsohave Y C X xF,andso Y C V(p)N(X xF).
Let g = g(z,y) € I(Y). Then, since g = 0 € A(Y) we have g(v,w) = 0 € A(Y), and

so w is a root of g( )( ) € Flv ][y] Since p is the minimal polynomial of w over F(v) it
follovvs that p (y)|9(v)(y) in F[v][y]. Using the isomorphism f* : F[u] — F[v] we sce that
(¥)|g(u)(y) in F[ Iyl = A(X)[y], say g(u)(y) = p(u)(y)k(u)(y) € AX)[y] = A(X <F).

Represent k:( )( ) by a polynomial k(z,y) and note that g(x,y)—p(x,y)k(z,y) € (X X F).
Thus we have g € (p) + I(X x F). This shows that I(Y) C (p) + I(X x F). It follows that
Vip)N(X xF)=V((p)+I(X xF)) CY. Thus Y = V(p) N (X x F), as claimed.

Write p(z,t) = po(z) +p1(x) + - - - + pe(x)t* with each py(z) € F[z] and pe(x) € I(X).
Since Y = V (p), for each point a € X = F7, the fiber f~1(a) is equal to the set of all pairs
(a,b) € F™*! for which b is a root of the polynomial p(a)(t) € F[t]. When F is algebraically
closed, the fiber f~1(a) contains exactly ¢ points when the polynomial p(a)(t) has exactly
¢ distinct roots, that is when disc,(p(a)) # 0. Let U = {z € X|res¢(p(z)) # 0}.
Note that diSCg(p(x)) is a polynomial in z = (z1,---,2,) so U is open in X. Also
note that U # ) because if we had res¢(p(z)) = 0 for all z € F" then we would have
res(p(u)) = 0 € A(X) = F[u] hence res(p(v)) =0 € F[v], but then p(v)(y) and p(v)’(y)
would have a non-constant common factor in F[v][t], and hence p(v)(y) would be reducible.
Thus, in the case that w is algebraic over f*(K(X)) = F(v), the map f is generically £ : 1
where

0= degp(v)(y) = [F(o)ly] : F(v)] = [K(Y) : f*(K(X))].

This completes the proof of the theorem in the special case that X C F"* and Y C Fn*!
and f:Y — X is the projection map f(z,y) = =.



Now consider the general case. Suppose X C F", Y C F™ and f:Y — X is any
dominant polynomial map. Let uy(x) =z € A(X) so that A(X) = Flu] = Fluq, -, uy).
Let wy(y) = yx € A(Y) so that A(Y) = Flwy, -+, wy]. Say f(y) = (fl(y), = -,fn(y)) and
let v(y) = fr(y) € A(Y). Note that f*(ur)(y) = ur(f(y)) = fu(y) = vi(y) so we have
[ (A(X)) = f*(F[u]) = Flv] and the map f* : F[u] — F[v] is given by f*(uy) = vy. We
have A(Y) = Flwy, -+, wp] = f*(AX))[w1, -, wm] = Flog, -+, vp][wr, -+ wi).

Suppose that A(Y') is algebraic over f*(A(X)). We have a tower of integral domains

AX = f*(A(X)) = F[v] C Fo][wi] C Flv]fwr, wa] € -+ C Flo]wy, -, wn] = AY).

At each stage, wy is algebraic over the previous quotient field F(v)[ws, -, wr_1]. We
obtain, correspondingly, a chain of irreducible varieties X; C F*** and projection maps
fr : Xx — Xk_1, as in the special case studied above,

X=Xog+— Xi+—Xog+— - +— X,,1+— X, 2Y.

At each stage, we have Xy = V(pr) N (Xk—1 x F) where py, € Flxy, -, 20,91, -, Yk
is a polynomial such that pg(v,w;,- -, wg_1,y) is the minimal polynomial of wy over
F(v)[wy, -+, wg—1], and we have a natural isomorphism ¢y, : A(Xy) — F[v][wy, -, wg] of
F-algebras. The given dominant polynomial map f : ¥ — X is equal to the composite
f=fiofso---0f, 0og where g : Y — X,, is the polynomial isomorphism for which
g* = ¢m  A(X,,) = A(Y). Each projection map fi is generically ¢ : 1 where

U, = deg(pr) = [F(v)[wl, o wg] c F(o)[wy, - ,wk_l]],

and we have d = [K(Y) : f*(K(X))] = 14y -+ b,

We need to show that the composite fio fao---0o f,, is generically d : 1. By induction,
it suffices to show that fi o fry1 is generically ¢l 1 : 1. Let Up—1 C X1 and Uy C X
be dense open subsets such that f ' (a) contains exactly ¢} points for every a € Uj_; and
fk+1_1(b) contains exactly {1 points for every b € Uy. Let U = X}, \ Uy and note that
U, is a closed subvariety of Xj. For a € Uy_1 \ f(Uy°), the fibre f; *(a) contains exactly
/;, points and we have fk_l(a) C U and so the set fk+1_1(fk_1(a)) contains exactly
0L+ points. Thus it suffices to show that X1 \ f(Ux®) contains a dense open set in
X}j—1 or, equivalently, to show that f(Uy°) % Xr_1. We do this by comparing dimensions.

First note that since wy, is algebraic over F(v)[wy, - -, wi—1] we have

dim(Xy) = trans F(v)[w1, -, wy] = trans F(v)[w1, -, wp—1] = dim(Xp_1).

Since Uy, # 0 we have U° % Xk so dim(Ux°) < dim(Xj) = dim(Xy_1). Since the map

fr 1 U — fr(Ux°) is surjective, it follows that the map fi : Up® — fi(Ux®) is dominant, so

we have dim (f3,(Ux°)) < dim(Ux®) < dim(X;_1), and hence f;,(Uy°) % Xk—1, as required.

Suppose, finally, that K(Y') is transcendental over f* (K (X )) Reorder the variables,
if necessary, so that {ws,---,w,} is a transcendence basis for K(Y) = F(v)(w1, -+, wp)
over f*(K(X)) = F(v). Form the corresponding chain of varieties Xj and projection
maps fr @ Xx — Xr_1, as above. For 1 < k < r we have X = X1 X F and f; is
(globally) oo : 1, and for r < k < m the map fi is generically ¢; : 1. Thus the composite
fio---o f.is (globally) oo : 1 and the composite f.4 1 0---0 f,, is generically d : 1
where d = 0,114, 49+ ly, and so f1 -+ o f,, (hence also the original dominant map f) is
generically oo : 1.



9.11 Corollary: Let F be algebraically closed, let X C F"™ and Y C F™ be irreducible
varieties, and let f : Y — X be a dominant polynomial map. If A(X) is integral over
f*(A(Y)) then f is surjective and finite: 1.

Proof: This result can be extracted from the proof of the above theorem. Using the
notation of the proof, in the case that X C F*, Y € F"™1 A(X) = Flu] = Fluy, -+, uy],
and A(Y) = F[v] = Flvy, -, vn,w], recall that Y = V(p) N (X x F) € F* where
p(z,y) € Flz,y] and p(v)(y) is the minimal polynomial of w over f*(A(X)) = F(v). For

( t) = po(x) + pr(x)t + --- + pe(z)t’ with ps(v) # 0 € Flv], if A(Y) is integral over
( (X)) = F[v], then we have p;(v) = 1 € F[v] and hence p;(u) = 1 € Flu] = A(X).
Then for all « € X we have py(a) = 1, so the polynomial p(a) € F[y] is of degree ¢, for
every a € X. It follows that the fibre f~(a) = {(a,y)|p(a)(y) = 0} always has at least 1
and at most ¢ elements, for every a € X.

9.12 Corollary: Let F be an algebraically closed and let X be an irreducible affine
variety. Then dim(X) = d if and only if there exists a surjective finite:1 polynomial map
f : X — F<¢ if and only if there exists a dominant generically finite: 1 polynomial map
f: X — F,

Proof: Suppose that dim(X) = d. By Noether’s Normalization Lemma, we can choose
Uy, -+, uqg € A(X) such that {uy,---,uq} is algebraically independent (so it is a transcen-
dence basis for K(X) over F) and A(X) is integral over Fluq,- -, uq]. Since {uy, -, uq}
is algebraically independent, the F-algebra homomorphism ¢ : F[t1,---,t4] = AX given
by ¢(tr) = wuy is injective. Let f : X — F¢ be the dominant polynomial map with
f* = ¢. Since AX is integral over f* (F[tl, e ,td]) = Fluq,- -, uq] it follows from the
above theorem that f is surjective and finite:1.

Suppose, on the other hand, that f : X — F? is a dominant and generically finite: 1
polynomial map. Then, by the above theorem, K (F?) is algebraic over f*(K (X)) and so

dim(X) = trans K (X) = transg f~ (K(X)) = transFK(Fd) = dim(F%) = d.
9.13 Corollary: Let F be an algebraically closed field, and let X and Y be affine varieties
with Y irreducible and with X % Y. Then there exists an irreducible variety Z with
XCZz % Y such that dim(Z) = dim(Y) — 1.
Proof: Let d = dim Y. Since every irreducible component of X is a proper subvariety of Y,
we have dim X < dimY = d. Let f : Y — F¢ be a surjective and finite:1 polynomial map.

Then f : X — f(X) C F? is surjective and finite: 1, and so f : X — f(X) ) is dominant
and genencally finite: 1. It follows that dim f(X) = dim(X) < d and so f(X % F?. Since

%Fdwehave{O}—IFd %I f(X)) so we can choose 0 # g € I( f(X)). Then
Wehavef()CV()%Fd.LetZ Y (V(g)) CY. Since f : Z — f(Z) =V(g) is

surjective and finite: 1, we have dim Z = dim V' (g) = d — 1. Since f(X) C f(X) C V(g)
we have X = f~(f(X ))gf YVi(g) =2Z.

9.14 Corollary: Let F be an algebraically closed field, and let X be an irreducible affine
variety. Then dim(X) is equal to the length ¢ of the longest chain of irreducible varieties
0+ Xo % X1 % e % X, = X or, equivalently, the length ¢ of the longest chain of prime
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Proof: This follows from the above corollary together with Corollary 9.4.




