

8. Hilbert's Nullstellensatz

8.1 Theorem: (Hilbert's Weak Nullstellensatz) Let \mathbf{F} be an algebraically closed field, and let $A \subsetneq \mathbf{F}[x_1, \dots, x_n]$ be a proper ideal. Then $V(A) \neq \emptyset$.

Proof: Using Zorn's Lemma, we can choose a maximal ideal $M \subseteq \mathbf{F}[x_1, \dots, x_n]$ with $A \subseteq M$. Note that $V(M) \subseteq V(A)$ so it suffices to show that $V(M) \neq \emptyset$.

Let $\mathbf{L} = \mathbf{F}[x_1, \dots, x_n]/M$, and note that \mathbf{L} is a field since M is maximal. Let ϕ be the natural projection $\phi : \mathbf{F}[x_1, \dots, x_n] \rightarrow \mathbf{L}$, which is given by $\phi(f) = f + M$. Notice that $\mathbf{F} \cap M = \{0\}$ since if we had $0 \neq a \in \mathbf{F} \cap M$ then we would also have $1 = \frac{1}{a}a \in M$ so M would not be maximal. This implies that the restriction of ϕ to \mathbf{F} is injective, since for $a \in \mathbf{F}$ we have $\phi(a) = 0 \implies a \in M \implies a \in \mathbf{F} \cap M \implies a = 0$. Let us write $\mathbf{K} = \phi(\mathbf{F})$. Then $\phi : \mathbf{F} \rightarrow \mathbf{K}$ is an isomorphism of fields. In particular, \mathbf{K} is also algebraically closed.

Now for $i = 1, \dots, n$, write $u_i = \phi(x_i) = x_i + M$. Then we have $\mathbf{L} = \mathbf{K}[u_1, \dots, u_n]$. We claim that the fact that $\mathbf{L} = \mathbf{K}[u_1, \dots, u_n]$ is a field implies that each u_i must be algebraic over \mathbf{K} . Suppose, for a contradiction, that the u_i are not all algebraic over \mathbf{K} . Then, writing $r = \text{trans}_{\mathbf{K}} \mathbf{K}[u_1, \dots, u_n]$, we have $r \geq 1$. By Noether's Normalization Lemma we can choose an algebraically independent set $\{v_1, \dots, v_r\} \subseteq \mathbf{K}[u_1, \dots, u_n]$ such that $\mathbf{K}[u_1, \dots, u_n]$ is integral over $\mathbf{K}[v_1, \dots, v_r]$. But since $\{v_1, \dots, v_r\}$ is algebraically independent over \mathbf{K} , so that we can identify $\mathbf{K}[v_1, \dots, v_r]$ as the ring of polynomials in the variables v_1, \dots, v_r , the ideal $\langle v_1, \dots, v_r \rangle$ is maximal in $\mathbf{K}[v_1, \dots, v_r]$. By the Lying Over Theorem there must be a maximal ideal $N \subseteq \mathbf{L}$ which lies over it. But since \mathbf{L} is a field, $\{0\}$ is the only maximal ideal in \mathbf{L} , and $\{0\}$ certainly does not lie over $\langle v_1, \dots, v_r \rangle$. This gives the required contradiction.

Since each u_i is algebraic over $\mathbf{K} = \phi(\mathbf{F})$, which is algebraically closed, we have $u_i \in \mathbf{K}$ for all i . For each $i = 1, \dots, n$, choose $a_i \in \mathbf{F}$ so that $\phi(a_i) = u_i$, that is $\phi(a_i) = \phi(x_i)$, and set $a = (a_1, \dots, a_n) \in \mathbf{F}^n$. We claim that $a \in V(M)$ so that $V(M) \neq \emptyset$. Indeed, for $f \in M$ we have $\phi(f) = 0$, so if we write $f = \sum c_{i_1, \dots, i_n} x_1^{i_1} \cdots x_n^{i_n}$ then we have $\phi(f(a)) = \sum \phi(c_{i_1, \dots, i_n}) \phi(a_1)^{i_1} \cdots \phi(a_n)^{i_n} = \sum \phi(c_{i_1, \dots, i_n}) \phi(x_1)^{i_1} \cdots \phi(x_n)^{i_n} = \phi(f) = 0$, and hence $f(a) = 0$ since the restriction of ϕ to \mathbf{F} is injective.

8.2 Example: If \mathbf{F} is not algebraically closed, then it is certainly possible to find a proper ideal $A \subsetneq \mathbf{F}[x_1, \dots, x_n]$ with $V(A) = \emptyset$. Indeed for any non-constant polynomial $f \in \mathbf{F}[x_1, \dots, x_n]$ with no roots, we have $\langle f \rangle \subsetneq \mathbf{F}[x_1, \dots, x_n]$ but $V(\langle f \rangle) = \emptyset$.

8.3 Definition: Let R be a commutative ring. The **radical** of an ideal A is the ideal

$$\sqrt{A} = \{r \in R \mid r^n \in A \text{ for some } n \in \mathbf{N}\}.$$

Note that \sqrt{A} is an ideal since for $r \in R$ and $a, b \in \sqrt{A}$ with $a^n \in A$ and $b^m \in A$, we have $(ar)^n = a^n r^n \in A$ and we have $(a+b)^{n+m} = a^{n+m} + \cdots + a^n b^m + \cdots + b^{n+m} \in A$. Also note that $A \subseteq \sqrt{A}$. A **radical ideal** is an ideal in R of the form \sqrt{A} for some ideal A .

8.4 Note: For any ideal A in a commutative ring R , A is radical $\iff A = \sqrt{A}$.

Proof: If $A = \sqrt{A}$ then A is radical by definition. Conversely, suppose that A is radical, say $A = \sqrt{B}$. We have $A \subseteq \sqrt{A}$, so we only need to show that $\sqrt{A} \subseteq A$. Let $a \in \sqrt{A}$, say $a^n \in A = \sqrt{B}$. Choose $m \in \mathbf{N}$ such that $(a^n)^m \in B$. Then $a^{nm} \in B$ so $a \in \sqrt{B} = A$.

8.5 Example: In a commutative ring, every prime ideal is a radical ideal.

8.6 Example: In \mathbf{Z} , if $n = p_1^{k_1} p_2^{k_2} \cdots p_l^{k_l}$ where the p_i are distinct primes, then we have $\sqrt{\langle n \rangle} = \langle p_1 p_2 \cdots p_l \rangle$. Similarly, if $f \in \mathbf{F}[x_1, \dots, x_n]$ factors into irreducible polynomials as $f = f_1^{k_1} f_2^{k_2} \cdots f_l^{k_l}$, then $\sqrt{\langle f \rangle} = \langle f_1 f_2 \cdots f_l \rangle$.

8.7 Note: Let A be any ideal in $\mathbf{F}[x_1, \dots, x_n]$. Then $V(A) = V(\sqrt{A})$, and $\sqrt{A} \subseteq \overline{A}$, and if A is closed then A must be radical.

Proof: Since $A \subseteq \sqrt{A}$, we have $V(\sqrt{A}) \subseteq V(A)$. Let $a \in V(A)$. Let $f \in \sqrt{A}$. Choose $n \in \mathbf{N}$ so that $f^n \in A$. Then since $a \in V(A)$, we have $f^n(a) = 0$, and so $f(a) = 0$. Since $f \in \sqrt{A}$ was arbitrary, we have $f(a) = 0$ for every $f \in \sqrt{A}$, and so $a \in V(\sqrt{A})$. Thus $V(A) = V(\sqrt{A})$. Since $V(A) = V(\sqrt{A})$, we have $\sqrt{A} \subseteq \overline{\sqrt{A}} = I(V(\sqrt{A})) = I(V(A)) = \overline{A}$. And finally, if A is closed then we have $\sqrt{A} \subseteq \overline{A} = A$.

8.8 Theorem: (Hilbert's Nullstellensatz) Let \mathbf{F} be an algebraically closed field and let A be an ideal in $\mathbf{F}[x_1, \dots, x_n]$. Then $\overline{A} = \sqrt{A}$.

Proof: We have seen that $\sqrt{A} \subseteq I(V(A))$, so we must show that $I(V(A)) \subseteq \sqrt{A}$. Let $f \in I(V(A)) \subseteq \mathbf{F}[x_1, \dots, x_n]$. Write $x = (x_1, \dots, x_n)$, let $g(x, y) = y f(x) - 1 \in \mathbf{F}[x_1, \dots, x_n, y]$ and let B be the ideal generated by $A \cup \{g\}$ in $\mathbf{F}[x_1, \dots, x_n, y]$. We claim that $V(B) = \emptyset$. Indeed, suppose for a contradiction that $(a, b) \in V(B)$, where $a \in \mathbf{F}^n$ and $b \in \mathbf{F}$. Then for every $h(x) \in A$, we also have $h(x) \in B$ so $h(a) = 0$, and so we have $a \in V(A) \subseteq \mathbf{F}^n$. Since $f \in I(V(A))$, we have $f(a) = 0$. Also, $g(x, y) \in B$ so we have $0 = g(a, b) = b f(a) - 1 = -1$, giving a contradiction, so $V(B) = \emptyset$, as claimed. By Hilbert's Weak Nullstellensatz, we must have $B = \mathbf{F}[x_1, \dots, x_n, y]$. In particular, we have $1 \in B = \langle A \cup \{g\} \rangle$, so we can write

$$1 = \sum_{i=1}^{k-1} f_i(x) g_i(x, y) + (y f(x) - 1) g_k(x, y) \in \mathbf{F}[x_1, \dots, x_n, y]$$

where each $f_i(x) \in A$ and each $g_i(x, y) \in \mathbf{F}[x_1, \dots, x_n, y]$. Setting $y = \frac{1}{f(x)} \in \mathbf{F}(x_1, \dots, x_n)$ we have

$$1 = \sum_{i=1}^k f_i(x) g_i\left(x, \frac{1}{f(x)}\right) \in \mathbf{F}(x_1, \dots, x_n).$$

Multiplying by $f^N(x)$, where N is the maximum of the degrees in y of the polynomials $g_i(x, y)$, we obtain

$$f^N(x) = \sum_{i=1}^k f_i(x) h_i(x) \in A \subseteq \mathbf{F}[x_1, \dots, x_n]$$

where $h_i(x) = f^N(x) g_i\left(x, \frac{1}{f(x)}\right) \in \mathbf{F}[x_1, \dots, x_n]$. Since $f^N \in A$ for some N , we have $f \in \sqrt{A}$ as required.

8.9 Example: If \mathbf{F} is not algebraically closed, then we can find ideals $A \subseteq \mathbf{F}[x_1, \dots, x_n]$ such that $\sqrt{A} \not\subseteq \overline{A}$. For example, if f is any irreducible polynomial in $\mathbf{F}[x_1, \dots, x_n]$ with no roots, then we have $\sqrt{\langle f \rangle} = \langle f \rangle \not\subseteq \mathbf{F}[x_1, \dots, x_n] = \overline{\langle f \rangle}$

8.10 Corollary: If \mathbf{F} is an algebraically closed field, then the maps $A \mapsto V(A)$ and $X \mapsto I(X)$ give a bijective order-reversing correspondence between the set of all radical ideals $A \subseteq \mathbf{F}[x_1, \dots, x_n]$ and the set of all varieties $X \subseteq \mathbf{F}^n$. Under this correspondence, every maximal ideal M corresponds to a point, and every prime ideal P corresponds to an irreducible variety.

8.11 Corollary: If \mathbf{F} is an algebraically closed field and $X \subseteq \mathbf{F}^n$ is an irreducible variety and $\phi : \mathbf{F}[x_1, \dots, x_n] \rightarrow \mathbf{F}[x_1, \dots, x_n]/I(X) = A(X)$ is the natural projection, then the maps $B \mapsto V(\phi^{-1}(B))$ and $Y \mapsto \phi(I(Y))$ give a bijective order-reversing correspondence between the set of all radical ideals $B \subseteq A(X)$ and the set of all varieties $Y \subseteq X$. Under this correspondence, every maximal ideal $M \subseteq A(X)$ corresponds to a point in X , and every prime ideal $P \subseteq A(X)$ corresponds to an irreducible variety $Y \subseteq X$.

Proof: This follows from the previous corollary together with the fact that, when R is a commutative ring and $I \subseteq R$ is an ideal and $\phi : R \rightarrow R/I$ is the natural projection, the maps $A \mapsto \phi(A)$ and $B \mapsto \phi^{-1}(B)$ give a bijective correspondence between the set of ideals $A \subseteq R$ with $I \subseteq A$ and the set of all ideals $B \subseteq R/I$ and that, under this correspondence, radical and prime and maximal ideals $A \subseteq R$ with $I \subseteq A$ correspond to radical and prime and maximal ideals $B \subseteq R/I$.

8.12 Corollary: If \mathbf{F} is an algebraically closed field and $X \subseteq \mathbf{F}^n$ is a variety, then every radical ideal $A \subseteq A(X)$ can be decomposed uniquely (up to order) as $A = P_1 \cap P_2 \cap \dots \cap P_l$ for some prime ideals $P_i \subseteq A(X)$ with no P_i contained in any other P_j .

8.13 Corollary: If \mathbf{F} is algebraically closed, and if $f \in \mathbf{F}[x_1, \dots, x_n]$ is an irreducible polynomial, then $X = V(f) \subseteq \mathbf{F}^n$ is an irreducible variety with $I(X) = \langle f \rangle$. More generally, if $f \in \mathbf{F}[x_1, \dots, x_n]$ decomposes into irreducible factors as $f = f_1^{k_1} f_2^{k_2} \dots f_l^{k_l}$, then the irreducible components of the variety $X = V(f)$ are the varieties $V(f_i)$.

8.14 Example: In $\mathbf{C}[x, y]$, the polynomial $f(x, y) = y^2 + x^2(x-1)^2$ factors into irreducibles as $f(x, y) = (y + i x(x-1))(y - i x(x-1))$, and so the irreducible components of the variety $V(f) \subseteq \mathbf{C}^2$ are the varieties $V(y + i x(x-1))$ and $V(y - i x(x-1))$. On the other hand, the same polynomial $f(x, y)$ is irreducible in $\mathbf{R}[x, y]$, and in \mathbf{R}^2 we have $V(f) = \{(0, 0), (1, 0)\}$ which is a reducible variety.

8.15 Corollary: If \mathbf{F} is algebraically closed and R is an integral domain which is finitely generated over \mathbf{F} , then there exists an irreducible affine variety X with $A(X) \cong R$.

Proof: Let u_1, \dots, u_n be generators for R over \mathbf{F} so that we have $R = \mathbf{F}[u_1, \dots, u_n]$. Let $\phi : \mathbf{F}[x_1, \dots, x_n] \rightarrow R$ be the \mathbf{F} -algebra homomorphism given by $\phi(x_k) = u_k$ for $1 \leq k \leq n$. Let $P = \ker \phi$. Then P is an ideal and $R = \mathbf{F}[u_1, \dots, u_n] \cong \mathbf{F}[x_1, \dots, x_n]/P$. Since R is an integral domain, it follows that P is prime, hence radical. Since \mathbf{F} is algebraically closed, it follows that P is closed. Thus for the variety $X = V(P) \subseteq \mathbf{F}^n$, we have $I(X) = P$. Since $I(X) = P$ and P is prime, it follows that $A(X) \cong R$ and X is irreducible.

8.16 Corollary: If \mathbf{F} is algebraically closed, and $X \subseteq \mathbf{F}^n$ and $Y \subseteq \mathbf{F}^m$ are irreducible varieties, and $f : X \rightarrow Y$ is a rational map with domain X , then f is a polynomial map.

Proof: Suppose $f : X \rightarrow Y$ is well-defined at every point $a \in X$. For each $a \in X$ choose $p_a \in \mathbf{F}[x_1, \dots, x_n]^m$ and $q_a \in \mathbf{F}[x_1, \dots, x_n]$ such that $f = \frac{p_a}{q_a}$ and $q_a(a) \neq 0$. Let $A = \langle S \rangle$ where $S = \{q_a \mid a \in X\}$. By Hilbert's Basis Theorem, we can choose points $a_1, \dots, a_\ell \in X$ such that $A = \langle q_{a_1}, \dots, q_{a_\ell} \rangle$. Note that $V(A) = \emptyset$ because for all $a \in X$ we have $q_a \in A$ and $q_a(a) \neq 0$. By Hilbert's Weak Nullstellensatz, we must have $A = \mathbf{F}[x_1, \dots, x_n]$. In particular, we have $1 \in A = \langle q_{a_1}, \dots, q_{a_\ell} \rangle$ so we can write $1 = \sum_{k=1}^{\ell} g_k q_{a_k}$ for some $g_k \in \mathbf{F}[x_1, \dots, x_n]$. Then $f = 1 \cdot f = \sum_{k=1}^{\ell} g_k q_{a_k} f = \sum_{k=1}^{\ell} g_k p_{a_k}$, which is a polynomial map.

8.17 Example: In $\mathbf{R}[x]$ the rational map $f(x) = \frac{1}{x^2+1}$ is not a polynomial map.

8.18 Corollary: Let \mathbf{F} be algebraically closed, and let $X \subseteq \mathbf{F}^n$ and $Y \subseteq \mathbf{F}^m$ be irreducible varieties, Let $f : Y \rightarrow X$ is a dominant polynomial map and note that $f^* : A(X) \rightarrow A(Y)$ is injective so that $A(X) \cong f^*(A(X)) \subseteq A(Y)$. If $A(Y)$ is integral over $f^*(A(X))$ then f is surjective.

Proof: Let $a \in X$ and let $M \subseteq A(X)$ be the maximal ideal corresponding to a . Let $N = f^*(M)$. Since f is dominant so that f^* is injective, N is maximal in $f^*(A(X))$. By the Lying Over Theorem, since $A(Y)$ is integral over $f^*(A(X))$, we can choose a maximal ideal $N \subseteq A(Y)$ such that $N \cap f^*(A(X)) = f^*(M)$. Let $b \in Y$ be the element which corresponds to the maximal ideal N . We claim that $f(b) = a$. Let $g \in M$. Then $f^*(g) \in f^*(M) \subseteq N$. Since $f^*(g) \in N$ we have $f^*(g)(b) = 0$, that is $g(f(b)) = 0$. In particular, taking $g = x_k - a_k \in M$ we obtain $f_k(b) = a_k$ so that $f(b) = a$, as claimed.

8.19 Example: For $X = \mathbf{R}$ and $Y = V(y - x^2) \subseteq \mathbf{R}^2$, the projection map $f : Y \rightarrow X$ given by $f(x, y) = y$ is a dominant polynomial map, and $A(Y)$ is integral over $f^*(A(X))$, but f is not surjective.