
8. Hilbert’s Nullstellensatz

8.1 Theorem: (Hilbert’s Weak Nullstellensatz) Let F be an algebraically closed field,
and let A ⊂6= F[x1, · · · , xn] be a proper ideal. Then V (A) 6= ∅.

Proof: Using Zorn’s Lemma, we can choose a maximal ideal M ⊆ F[x1, · · · , xn] with
A ⊆M . Note that V (M) ⊆ V (A) so it suffices to show that V (M) 6= ∅.

Let L = F[x1, · · · , xn]
/
M , and note that L is a field since M is maximal. Let φ be

the natural projection φ : F[x1, · · · , xn]→ L, which is given by φ(f) = f +M . Notice that
F ∩M = {0} since if we had 0 6= a ∈ F ∩M then we would also have 1 = 1

a a ∈ M so M
would not be maximal. This implies that the restriction of φ to F is injective, since for
a ∈ F we have φ(a) = 0 =⇒ a ∈ M =⇒ a ∈ F ∩M =⇒ a = 0. Let us write K = φ(F).
Then φ : F→ K is an isomorphism of fields. In particular, K is also algebraically closed.

Now for i = 1, · · · , n, write ui = φ(xi) = xi + M . Then we have L = K[u1, · · · , un].
We claim that the fact that L = K[u1, · · · , un] is a field implies that each ui must be
algebraic over K. Suppose, for a contradiction, that the ui are not all algebraic over
K. Then, writing r = trans

K
K[u1, · · · , un], we have r ≥ 1. By Noether’s Normalization

Lemma we can choose an algebraically independent set {v1, · · · , vr} ⊆ K[u1, · · · , un] such
that K[u1, · · · , un] is integral over K[v1, · · · , vr]. But since {v1, · · · , vr} is algebraically
independent over K, so that we can identify K[v1, · · · , vr] as the ring of polynomials in the
variables v1, · · · , vr, the ideal

〈
v1, · · · , vr

〉
is maximal in K[v1, · · · , vr]. By the Lying Over

Theorem there must be a maximal ideal N ⊆ L which lies over it. But since L is a field,
{0} is the only maximal ideal in L, and {0} certainly does not lie over

〈
v1, · · · , vr〉. This

gives the required contradiction.
Since each ui is algebraic over K = φ(F), which is algebraically closed, we have ui ∈ K

for all i. For each i = 1, · · · , n, choose ai ∈ F so that φ(ai) = ui, that is φ(ai) = φ(xi),
and set a = (a1, · · · , an) ∈ Fn. We claim that a ∈ V (M) so that V (M) 6= ∅. Indeed,
for f ∈ M we have φ(f) = 0, so if we write f =

∑
c
i1,···,in

x1
i1 · · ·xnin then we have

φ(f(a)) =
∑
φ
(
c
i1,···,in

)
φ(a1)i1 · · ·φ(an)in =

∑
φ
(
c
i1,···,in

)
φ(x1)i1 · · ·φ(xn)in = φ(f) = 0,

and hence f(a) = 0 since the restriction of φ to F is injective.

8.2 Example: If F is not algebraically closed, then it is certainly possible to find a
proper ideal A ⊂6= F[x1, · · · , xn] with V (A) = ∅. Indeed for any non-constant polynomial

f ∈ F[x1, · · · , xn] with no roots, we have 〈f〉 ⊂6= F[x1, · · · , xn] but V (〈f〉) = ∅.

8.3 Definition: Let R be a commutative ring. The radical of an ideal A is the ideal
√
A =

{
r ∈ R

∣∣rn ∈ A for some n ∈ N
}
.

Note that
√
A is an ideal since for r ∈ R and a, b ∈

√
A with an ∈ A and bm ∈ A, we have

(ar)n = anrn ∈ A and we have (a+ b)n+m = an+m + · · ·+ anbm + · · ·+ bn+m ∈ A. Also
note that A ⊆

√
A. A radical ideal is an ideal in R of the form

√
A for some ideal A.

8.4 Note: For any ideal A in a commutative ring R, A is radical ⇐⇒ A =
√
A.

Proof: If A =
√
A then A is radical by definition. Coversely, suppose that A is radical,

say A =
√
B. We have A ⊆

√
A, so we only need to show that

√
A ⊆ A. Let a ∈

√
A, say

an ∈ A =
√
B. Choose m ∈ N such that (an)m ∈ B. Then anm ∈ B so a ∈

√
B = A.

8.5 Example: In a commutative ring, every prime ideal is a radical ideal.
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8.6 Example: In Z, if n = p1
k1p2

k2 · · · plkl where the pi are distinct primes, then we have√
〈n〉 = 〈p1p2 · · · pl〉. Similarly, if f ∈ F[x1, · · · , xn] factors into irreducible polynomials as

f = f1
k1f2

k2 · · · flkl , then
√
〈f〉 = 〈f1f2 · · · fl〉.

8.7 Note: Let A be any ideal in F[x1, · · · , xn]. Then V (A) = V (
√
A), and

√
A ⊆ A, and

if A is closed then A must be radical.

Proof: Since A ⊆
√
A, we have V (

√
A) ⊆ V (A). Let a ∈ V (A). Let f ∈

√
A. Choose

n ∈ N so that fn ∈ A. Then since a ∈ V (A), we have fn(a) = 0, and so f(a) = 0. Since
f ∈

√
A was arbitrary, we have f(a) = 0 for every f ∈

√
A, and so a ∈ V (

√
A). Thus

V (A) = V (
√
A). Since V (A) = V (

√
A), we have

√
A ⊆

√
A = I(V (

√
A)) = I(V (A)) = A.

And finally, if A is closed then we have
√
A ⊆ A = A.

8.8 Theorem: (Hilbert’s Nullstellensatz) Let F be an algebraically closed field and let A
be an ideal in F[x1, · · · , xn]. Then A =

√
A.

Proof: We have seen that
√
A ⊆ I(V (A)), so we must show that I(V (A)) ⊆

√
A. Let f ∈

I(V (A)) ⊆ F[x1, · · · , xn]. Write x = (x1, · · · , xn), let g(x, y) = y f(x)−1 ∈ F[x1, · · · , xn, y]
and let B be the ideal generated by A ∪ {g} in F[x1, · · · , xn, y]. We claim that V (B) = ∅.
Indeed, suppose for a contradiction that (a, b) ∈ V (B), where a ∈ Fn and b ∈ F. Then for
every h(x) ∈ A, we also have h(x) ∈ B so h(a) = 0, and so we have a ∈ V (A) ⊆ Fn. Since
f ∈ I(V (A)), we have f(a) = 0. Also, g(x, y) ∈ B so we have 0 = g(a, b) = b f(a)−1 = −1,
giving a contradiction, so V (B) = ∅, as claimed. By Hilbert’s Weak Nullstellensatz, we
must have B = F[x1, · · · , xn, y]. In particular, we have 1 ∈ B = 〈A∪{g}〉, so we can write

1 =
k−1∑
i=1

fi(x)gi(x, y) + (yf(x)− 1)gk(x, y) ∈ F[x1, · · · , xn, y]

where each fi(x) ∈ A and each gi(x, y) ∈ F[x1, · · · , xn, y]. Setting y = 1
f(x) ∈ F(x1, · · · , xn)

we have

1 =
k∑

i=1

fi(x)gi
(
x, 1

f(x)

)
∈ F(x1, · · · , xn) .

Multiplying by fN (x), where N is the maximum of the degrees in y of the polynomials
gi(x, y), we obtain

fN (x) =
k∑

i=1

fi(x)hi(x) ∈ A ⊆ F[x1, · · · , xn]

where hi(x) = fN (x)gi
(
x, 1

f(x)

)
∈ F[x1, · · · , xn]. Since fN ∈ A for some N , we have

f ∈
√
A as required.

8.9 Example: If F is not algebraically closed, then we can find ideals A ⊆ F[x1, · · · , xn]
such that

√
A ⊂6= A. For example, if f is any irreducible polynomial in F[x1, · · · , xn] with

no roots, then we have
√
〈f〉 = 〈f〉 ⊂6= F[x1, · · · , xn] = 〈f〉

8.10 Corollary: If F is an algebraically closed field, then the maps A 7→ V (A) and
X 7→ I(X) give a bijective order-reversing correspondence between the set of all radical
ideals A ⊆ F[x1, · · · , xn] and the set of all varieties X ⊆ Fn. Under this correspondence,
every maximal ideal M corresponds to a point, and every prime ideal P corresponds to an
irreducible variety.
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8.11 Corollary: If F is an algebraically closed field and X ⊆ Fn is an irreducible variety
and φ : F[x1, · · · , xn] → F[x1, · · · , xn]

/
I(X) = A(X) is the natural projection, then the

maps B 7→ V
(
φ−1(B)

)
and Y 7→ φ

(
I(Y )

)
give a bijective order-reversing correspondence

between the set of all radical ideals B ⊆ A(X) and the set of all varieties Y ⊆ X. Under
this correspondence, every maximal ideal M ⊆ A(X) corresponds to a point in X, and
every prime ideal P ⊆ A(X) corresponds to an irreducible variety Y ⊆ X.

Proof: This follows from the previous corollary together with the fact that, when R is a
commutative ring and I ⊆ R is an ideal and φ : R → R/I is the natural projection, the
maps A 7→ φ(A) and B 7→ φ−1(B) give a bijective correspondence between the set of ideals
A ⊆ R with I ⊆ A and the set of all ideals B ⊆ R/I and that, under this correspondence,
radical and prime and maximal ideals A ⊆ R with I ⊆ A correspond to radical and prime
and maximal ideals B ⊆ R/I.

8.12 Corollary: If F is an algebraically closed field and X ⊆ Fn is a variety, then every
radical ideal A ⊆ A(X) can be decomposed uniquely (up to order) as A = P1∩P2∩· · ·∩Pl

for some prime ideals Pi ⊆ A(X) with no Pi contained in any other Pj .

8.13 Corollary: If F is algebraically closed, and if f ∈ F[x1, · · · , xn] is an irreducible
polynomial, then X = V (f) ⊆ Fn is an irreducible variety with I(X) = 〈f〉. More
generally, if f ∈ F[x1, · · · , xn] decomposes into irreducible factors as f = f1

k1f2
k2 · · · flkl ,

then the irreducible components of the variety X = V (f) are the varieties V (fi).

8.14 Example: In C[x, y], the polynomial f(x, y) = y2+x2(x−1)2 factors into irreducibles
as f(x, y) =

(
y+i x(x−1)

)(
y−i x(x−1)

)
, and so the irreducible components of the variety

V (f) ⊆ C2 are the varieties V (y+ i x(x−1)) and V (y− i x(x−1)). On the other hand, the
same polynomial f(x, y) is irreducible in R[x, y], and in R2 we have V (f) = {(0, 0), (1, 0)}
which is a reducible variety.

8.15 Corollary: If F is algebraically closed and R is an integral domain which is finitely
generated over F, then there exists an irreducible affine variety X with A(X) ∼= R.

Proof: Let u1, · · · , un be generators for R over F so that we have R = F[u1, · · · , un]. Let
φ : F[x1, · · · , xn]→ R be the F-algebra homomorphism given by φ(xk) = uk for 1 ≤ k ≤ n.
Let P = kerφ. Then P is an ideal and R = F[u1, · · · , un] ∼= F[x1, · · · , xn]

/
P . Since R is an

integral domain, it follows that P is prime, hence radical. Since F is algebraically closed,
it follows that P is closed. Thus for the variety X = V (P ) ⊆ Fn, we have I(X) = P .
Since I(X) = P and P is prime, it follows that A(X) ∼= R and X is irreducible.

8.16 Corollary: If F is algebraically closed, and X ⊆ Fn and Y ⊆ Fm are irreducible
varieties, and f : X → Y is a rational map with domain X, then f is a polynomial map.

Proof: Suppose f : X → Y is well-defined at every point a ∈ X. For each a ∈ X choose
pa ∈ F[x1, · · · , xn]m and qa ∈ F[x1, · · · , xn] such that f = pa

qa
and qa(a) 6= 0. Let A = 〈S〉

where S = {qa
∣∣a ∈ X}. By Hilbert’s Basis Theorem, we can choose points a1, · · · , a` ∈ X

such that A =
〈
qa1

, · · · , qa`

〉
. Note that V (A) = ∅ because for all a ∈ X we have qa ∈ A

and qa(a) 6= 0. By Hilbert’s Weak Nullstellensatz, we must have A = F[x1, · · · , xn].

In particular, we have 1 ∈ A =
〈
qa1

, · · · , qa`

〉
so we can write 1 =

∑̀
k=1

gkqak
for some

gk ∈ F[x1, · · · , xn]. Then f = 1 · f =
∑̀
k=1

gkqak
f =

∑̀
k=1

gkpak
, which is a polynomial map.

8.17 Example: In R[x] the rational map f(x) = 1
x2+1 is not a polynomial map.

3



8.18 Corollary: Let F be algebraically closed, and let X ⊆ Fn and Y ⊆ Fm be irreducible
varieties, Let f : Y → X is a dominant polynomial map and note that f∗ : A(X)→ A(Y )
is injective so that A(X) ∼= f∗

(
A(X)

)
⊆ A(Y ). If A(Y ) is integral over f∗

(
A(X)

)
then f

is surjective.

Proof: Let a ∈ X and let M ⊆ A(X) be the maximal ideal corresponding to a. Let
N = f∗(M). Since f is dominant so that f∗ is injective, N is maximal in f∗(A(X)).
By the Lying Over Theorem, since A(Y ) is integral over f∗(A(X)), we can choose a
maximal ideal N ⊆ A(Y ) such that N ∩ f∗(A(X)) = f∗(M). Let b ∈ Y be the element
which corresponds to the maximal ideal N . We claim that f(b) = a. Let g ∈ M . Then
f∗(g) ∈ f∗(M) ⊆ N . Since f∗(g) ∈ N we have f∗(g)(b) = 0, that is g(f(b)) = 0. In
particular, taking g = xk − ak ∈M we obtain fk(b) = ak so that f(b) = a, as claimed.

8.19 Example: For X = R and Y = V (y − x2) ⊆ R2, the projection map f : Y → X
given by f(x, y) = y is a dominant polynomial map, and A(Y ) is integral over f∗

(
A(X)

)
,

but f is not surjective.
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