
7. Ring Extensions and Field Extensions

7.1 Notation: Let S be a commutative extension ring of R, that is R ⊆ S, and let
U ⊆ S. The ring generated by U over R, denoted by R[U ] (or by R[u1, · · · , un] in the
case that U = {u1, · · · , un}), is the ring

R[U ] =
{
f(u1, · · · , un)

∣∣n ∈ N, f ∈ R[x1, · · · , xn]
}
.

The R-module generated by U (or spanned by U) over R is the R-module

span
R
U =

{ n∑
i=1

aiui

∣∣∣n ∈ N, ai ∈ R, ui ∈ U
}
.

We also say that U spans the set span
R
U over R. Notice that U ⊆ span

R
U ⊆ R[U ].

An element u ∈ S is called integral over R if u is a root of some monic polynomial
f ∈ R[x]. We say that S is integral over R if every element in S is integral over R.

7.2 Example: Verify that
√

2 is integral over Z, 1
2 is not integral over Z, x ∈ F[x] is

integral over F[x2], and 1
x ∈ F(x) is not integral over F[x].

7.3 Note: Let R, S and T be commutative rings with R ⊆ S ⊆ T . Notice that if
S = span

R
{u1, · · · , un} and T = span

S
{v1, · · · , vm} then T = span

R
{uivj}. Indeed, given

t ∈ T , we can write t =
∑
sjvj for some sj ∈ S, and we can write each sj as sj =

∑
rijui

for some rij ∈ R, and then t =
∑
i,j

rijuivj ∈ span
R
{uivj}.

7.4 Theorem: Let R and S be integral domains with R ⊆ S and let u ∈ S. Then the
following statements are equivalent.

(1) u is integral over R.
(2) R[u] is finitely generated as an R-module.
(3) R[u] is contained in some ring T ⊆ S which is finitely generated as an R-module.
(4) R[u] is integral over R.

Proof: First we show that (1) =⇒ (2). Suppose that u is integral over R. Choose a monic
polynomial f ∈ R[x] such that f(u) = 0, and say deg(f) = n. Let a ∈ R[u], say a = g(u)
where g ∈ R[x]. Since f is monic, we can use the division algorithm to write g = fq + r
where q, r ∈ R[x] and deg(r) < n. Since f(u) = 0 we have a = g(u) = r(u). And since
deg(r) < n, we have r(u) ∈ span

R
{1, u, u2, · · · , un−1}. Thus R[u] = span

R
{1, u, · · · , un−1}.

The implication (2) =⇒ (3) is clear (simply let T = R[u]), so we show next that
(3) =⇒ (4). Suppose that R[u] ⊆ T = span

R
{v1, · · · , vn} ⊆ S, and let w ∈ R[u]. Then for

each i = 1, · · · , n, we have w vi ∈ T = span
R
{v1, · · · , vn}, so we can write w vi =

n∑
i=1

aijvj

for some aij ∈ R. Let A be the n×n matrix with entries aij , and let v be the n×1 matrix
with entries vi. Then we have (wI)v = Av so (wI − A) v = 0. Since v 6= 0, this implies
that det(uI −A) = 0 in the quotient field of S. Thus w is a root of the monic polynomial
f(x) = det(xI − A), which is in R[x], so w is integral over R. This shows that R[u] is
integral over R.

Finally note that (4) clearly implies (1).
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7.5 Corollary: Let R, S and T be commutative rings with R ⊆ S ⊆ T . Suppose that T
is integral over S, and S is integral over R. Then T is integral over R.

Proof: Let t ∈ T . Then t is integral over S. Say a0+a1t+· · ·+an−1tn−1+tn = 0 with each
ai ∈ S. Since each ai ∈ R[a0, · · · , an−1], t is also integral over the ring R[a0, · · · , an−1]. By
the above theorem, there is a finite set which spans R[a0, · · · , an−1, t] over R[a0, · · · , an−1].
But since each ak is integral over R and hence also over R[a0, · · · , ak−1], we have a chain
of ring extensions R ⊆ R[a0] ⊆ · · · ⊆ R[a1, · · · , an−1] ⊆ R[a0, · · · , an−1, t] in which each
ring is spanned by a finite set over the previous ring. By the above note, this implies that
R[a0, · · · , an−1, t] is spanned by a finite set over R

7.6 Definition: Let S be a commutative extension ring of R. When A is an ideal in R
and B is an ideal in S with B ∩R = A we say that B lies over A.

7.7 Theorem: (The Lying Over Theorem) Let R and S be integral domains with R ⊆ S
and with S integral over R.

(1) If M ⊆ R is a maximal ideal then there is a maximal ideal N ⊆ S such that N∩R = M .
(2) If P ⊆ R is a prime ideal then there is a prime ideal Q ⊆ S such that Q ∩R = P .

Proof: We only provide a proof of Part (1). Let U be the set of all ideals A ⊆ S such that
A ∩R ⊆M . Then U is not empty since {0} ∈ U , and every chain of ideals A1 ⊆ A2 ⊆ · · ·
in U has an upper bound in U , namely the ideal

⋃∞
i=1Ai, so by Zorn’s Lemma, U has a

maximal element, say N . We shall show that in fact N is a maximal ideal in S and that
N ∩R = M .

First, we shall show that N∩R = M . Since N ∈ U we know that N∩R ⊆M . Suppose,
for a contradiction, that N ∩ R ⊂6= M . Choose m ∈ M \ (N ∩ R). Then N ⊂6= N + mS.

We cannot have (N +mS) ∩ R ⊆ M since otherwise N +mS would be in U and then N
would not be maximal in U . So we can choose r ∈ N +mS with r ∈ R but r /∈M . Since
r ∈ N + mS, we can write r = n + ms for some n ∈ N , s ∈ S, and then ms = r − n.
Since S is integral over R and s ∈ S, we have 0 = a0 + a1s+ · · ·+ ak−1s

k−1 + sk for some
ai ∈ R. Multiply this by mk to get

0 = a0m
k + a1m

k−1(ms) + · · ·+ ak−1m(ms)k−1 + (ms)k

= a0m
k + a1m

k−1(r − n) + · · ·+ ak−1m(r − n)k−1 + (r − n)k .

After expanding this expression, all the terms involving n lie in N , and hence the sum of
the remaining terms, which is u = a0m

k + a1m
k−1r+ · · ·+ ak−1mr

k−1 + rk, must also lie
in N . But notice that we also have u ∈ R, so u ∈ N ∩R ⊆M . All the terms involving m
lie in M , so the remaining term rk also lies in M . Since M is maximal and hence prime,
we also have r ∈ M . This gives the desired contradiction, since r /∈ M . We leave it as a
short exercise to verify that N must be maximal.

7.8 Example: The ring Z[
√

2] is integral over the ring Z, and the ideal M = 〈2〉 ⊆ Z is
maximal in Z. According to the Lying Over Theorem, we should be able to find a maximal
ideal N ⊆ Z[

√
2] which lies over M . If we let A = 〈2〉 ⊆ Z[

√
2] then A ∩ Z = M , but A is

not maximal in Z[
√

2]. If we let N = 〈
√

2〉 ⊆ Z[
√

2], then N is maximal and N ∩ Z = M .
For a similar illustration, note that the ring F[x] is integral over F[x2]. The ideal

M = 〈x2〉 ⊆ F[x2] is maximal in F[x2], so by the Lying Over Theorem we should be able
to find a maximal ideal N ⊆ F[x] which lies over M . If we let A = 〈x2〉 ⊆ F[x], then we
have A ∩ F[x2] = M , but A is not maximal. If we let N = 〈x〉 ⊆ F[x] then N is maximal
and N ∩ F[x2] = M .
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7.9 Definition: Let F be a subfield of K. We denote the field of rational functions
over F on the variables x1, · · · , xn by F(x1, · · · , xn). It is the quotient field of the integral
domain F[x1, · · · , xn]. The elements of F(x1, · · · , xn) can be written in the form f = p/q
for some p, q ∈ F[x1, · · · , xn] with q 6= 0, and we have

p

q
=
r

s
∈ F(x1, · · · , xn) ⇐⇒ ps− qr = 0 ∈ F[x1, · · · , xn] .

For U ⊆ K, the field generated by U over F, denoted by F(U) (or by f(u1, · · · , un) in
the case that U = {u1, · · · , un}) is the field

F(U) =

{
f(u1, · · · , un)

g(u1, · · · , un)

∣∣∣∣ n ∈ N, u1, · · · , un ∈ U, f, g ∈ F[x1, · · · , xn], g(u1, · · · , un) 6= 0

}
.

An element u ∈ K is called algebraic over F if u is the root of some polynomial
f ∈ F[x], otherwise u is called transcendental over F. If u is algebraic over F for every
u ∈ K then K is algebraic over F, otherwise K is transcendental over F.

7.10 Example: C is algebraic over R, R is transcendental over Q, and for any field F,
the element x ∈ F(x) is transcendental over F.

7.11 Theorem: Let F ⊆ K ⊆ L be fields.

(1) If u ∈ K is algebraic over F then there is a unique monic irreducible polynomial
f ∈ F[x], called the irreducible polynomial of u, such that f(u) = 0 in K.
(2) If u ∈ K is algebraic over F then F[u] = F(u) ∼= F[x]/〈f〉, where f is the irreducible
polynomial of u, and if deg(f) = n then {1, u, · · · , un−1} forms a basis for F[u] as a vector
space over F.
(3) If u ∈ K is transcendental over F then F[u] ⊂6= F(u), F[u] ∼= F[x], F(u) ∼= F(x) and the

dimension of F(u) over F is infinite.
(4) If every element of a subset U ⊆ K is algebraic over F then F(U) is algebraic over F.
(5) If L is algebraic over K, and K is algebraic over F, then L is algebraic over F.

Proof: We omit the proof

7.12 Definition: Let F ⊆ K be fields. For f ∈ F[x], we say that f splits in K[x] when
f factors as a product of linear polynomials in K[x]. Note that when f splits in K[x] the
roots of f all lie in K. For f ∈ F[x], we say that K is a splitting field of f when f splits
in K[x] and K is generated over F by the roots of f . For a set of polynomials S ⊆ F[x], we
say that K is a splitting field of S when every f ∈ S splits in K[x] and K is generated
over F by the roots of all the polynomials in S.

7.13 Theorem: Let F be a field and let S ⊆ F[x]. Then there exists a splitting field K
of S, and it is unique up to isomorphism.

Proof: We omit the proof.

7.14 Definition: Let F ⊆ K be fields. We say that K is algebraically closed when
every f ∈ K[x] splits in K[x]. We say that K is the algebraic closure of F when K is
algebraic over F and K is algebraically closed.

7.15 Theorem: Let F be a field. Then there exists an algebraic closure K of F, it is
unique up to isomorphism, and it is the splitting field of the set F[x] of all polynomials
over F.

Proof: We omit the proof.
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7.16 Definition: Let F ⊆ K be fields. A subset U ⊆ K is said to be algebraically
independent over F when for every n ∈ Z+, for every 0 6= f ∈ F[x1, · · · , xn], and for
all distinct elements u1, u2, · · · , un ∈ U , we have f(u1, · · · , un) 6= 0. In particular, the
empty set is algebraically independent over F. A transcendence basis for K over F is a
maximal algebraically independent set.

7.17 Note: We can see that {x1, · · · , xn} is a transcendence basis for F(x1, · · · , xn) over
F as follows. First note that {x1, · · · , xn} is algebraically independent over F, since for
f ∈ F[t1, · · · , tn], if f(x1, · · · , xn) = 0 ∈ F(x1, · · · , xn) then f = 0 ∈ F[t1, · · · , tn]. Then,
note that {x1, · · · , xn} is a maximal algebraically independent set, since given any element
p(x1,···,xn)
q(x1,···,xn)

∈ F(x1, · · · , xn) we can let f(t1, · · · , tn+1) = p(t1, · · · , tn) − q(t1, · · · , tn)tn+1,

and then f 6= 0 ∈ F[t1, · · · , tn+1] but f
(
x1, · · · , xn, p(x1,···,xn)

q(x1,···,xn)

)
= 0 ∈ F(x1, · · · , xn), which

shows that
{
x1, · · · , xn, p(x1,···,xn)

q(x1,···,xn)

}
is algebraically dependent over F.

7.18 Note: If {u1, · · · , un} is algebraically independent over F then we have natural
isomorphisms F[u1, · · · , un] ∼= F[x1, · · · , xn] and F(u1, · · · , un) ∼= F(x1, · · · , xn). Indeed the
maps φ : F[x1, · · · , xn]→ F[u1, · · · , un] and φ : F(x1, · · · , xn)→ F(u1, · · · , un) induced by
φ(xi) = ui are easily seen to give isomorphisms; the fact that {u1, · · · , un} is algebraically
independent ensures that kerφ = {0}.

7.19 Theorem: Let F ⊆ K be fields, let U, V ⊆ K and let u ∈ K. Then

(1) If U is algebraically independent over F then
(
u is transcendental over F(U) if and

only if U ∪ {u} is algebraically independent over F
)
.

(2) U is a transcendence basis for K over F if and only if
(
U is algebraically independent

over F and K is algebraic over F(U)
)
.

(3) If K is algebraic over F(U), then U contains a transcendence basis for K over F. In
particular, a transcendence basis for K over F does exist.
(4) If U is algebraically independent over F then U can be extended to a transcendence
basis for K over F.
(5) If U and V are both transcendence bases for K over F , then U and V have the same
cardinality.

Proof: To prove part (1), let U be algebraically independent over F. Suppose that u is
algebraic over F(U), say f(u) = 0 where 0 6= f ∈ F(U)[t]. Write f = a0 + a1t+ · · ·+ akt

k

with each ai ∈ F(U) and ak 6= 0, and say ai = p(u1,···,un)
q(u1,···,un)

where pi, qi ∈ F[x1, · · · , xn]. Set

g(x1, · · · , xn+1) = p0(x1,···,xn)
q0(x1,···,xn)

+ p1(x1,···,xn)
q1(x1,···,xn)

xn+1 + · · · + pk(x1,···,xn)
qk(x1,···,xn)

xn+1
k so that we have

0 6= g ∈ F(x1, · · · , xn)[xn+1] and g(u1, · · · , un, u) = f(u) = 0 ∈ K. By multiplying g by a
common multiple of the denominators qi, we obtain a polynomial 0 6= h ∈ F[x1, · · · , xn+1]
such that h(u1, · · · , un, u) = 0 ∈ K, and thus we see that U∪{u} is algebraically dependent.

Conversely, suppose that the set U ∪ {u} is algebraically dependent over F, say
f(u1, · · · , un, u) = 0 ∈ K where 0 6= f ∈ F[x1, · · · , xn+1] and u1, · · · , un ∈ U . Write
f = a0 + a1xn+1 + · · · + akxn+1

k with each ai ∈ F[x1, · · · , xn] and ak 6= 0, then let
g(t) = f(u1, · · · , un, t) = a0(u1, · · · , un) + a1(u1, · · · , un)t + · · · + ak(u1, · · · , un)tk so that
g ∈ F(U)[t] and g(u) = 0 ∈ K. If we had g = 0 ∈ F(U)[t] then we would have
ak(u1, · · · , un) = 0 ∈ K, but ak(u1, · · · , un) 6= 0 since ak 6= 0 ∈ F[x1, · · · , xn] and U is
algebraically independent. Since g 6= 0 ∈ F(U)[t] and g(u) = 0 ∈ K, it follows that u is
algebraic over F(U).
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Part (2) follows easily from part (1). To prove part (3), suppose that K is algebraic
over F(U). Let U be the collection of all subsets of U which are algebraically independent
over F. Then U 6= ∅ since ∅ ∈ U , and every chain U1 ⊆ U2 ⊆ · · · in U has an upper bound in

U , namely
∞⋃
i=1

Ui, and so by Zorn’s Lemma, U has a maximal element, say V . We claim that

V is a transcendence basis for K over F. Every u ∈ U is algebraic over F(V ) (otherwise,
by part (1), V ∪ {u} would be algebraically independent so that V ⊂6= V ∪ {u} ∈ U) and

so F(U) is algebraic over F(V ). This implies that K is algebraic over F(V ) (since K is
algebraic over F(U) which is algebraic over F(V )). So by part (2), V is a transcendence
basis for K over F. Part (4) can be proven similarly using Zorn’s Lemma.

Finally, we prove part (5), but only in the case that at least one of the two transcen-
dence bases is finite. Let U = {u1, · · · , un} be a transcendence basis for K over F, and let
V be another tanscendence basis. We claim that there is an element v1 ∈ V such that v1
is transcendental over F(u2, · · · , un). Suppose not. Then every v ∈ V would be algebraic
over F(u2, · · · , un) and so F(u2, · · · , un)(V ) would be algebraic over F(u2, · · · , un). Also, K
is algebraic over F(V ) (by part (2), since V is a transcendence basis), and hence also over
F(u2, · · · , un)(V ), So we would have K algebraic over F(u2, · · · , un), and in particular u1
would be algebraic over F(u2, · · · , un), and this is not possible since U is algebraically in-
dependent. This proves the claim, so we choose v1 ∈ V transcendental over F(u2, · · · , un).

Now we claim that {v1, u2, · · · , un} is another transcendence basis for K over F.
Since v1 is transcendental over F(u2, · · · , un), we know (from part 1) that {v1, u2, · · · , un}
is algebraically independent. Also, u1 must be algebraic over F(v1, u2, · · · , un), (otherwise
{v1, u1, u2, · · · , un} would be algebraically independent so U would not be a transcendence
basis) and so F(v1, u1, u2, · · · , un) is algebraic over F(v1, u2, · · · , un). Furthermore, K is
algebraic over F(u1, u2, · · · , un) and hence over F(v1, u1, u2, · · · , un), and so K is algebraic
over F(v1, u2, · · · , un). Thus {v1, u2, · · · , un} is a transcendence basis by part (2).

By repeating the above procedure, we can choose vk ∈ V for 1 ≤ k ≤ n so that
{v1, · · · , vk, uk+1, · · · , un} is a transcendence basis for K over F. The procedure must end
when we have chosen vn, and we must have V = {v1, · · · , vn}.

7.20 Definition: Let F ⊆ K be fields. We define the transcendence degree of K over
F, written trans

F
K, to be the cardinality of any transcendence basis for K over F.

7.21 Definition: We define the dimension of an irreducible variety X ⊆ Fn to be the
transcendence degree dim(X) = trans

F
K(X).

7.22 Example: When X = {a} with a ∈ Fn we have dim(X) = 0 because ∅ is a
transcendence basis forK(X) = F, and when F is infinite andX = Fn we have dim(X) = n
because {x1, · · · , xn} is a transcendence basis for K(X) = F(x1, · · · , xn).

7.23 Note: When X and Y are irreducible affine varieties and f : Y → X is a dominant
polynomial or rational map, the pullback f∗ : K(X) → K(Y ) is injective so we have
K(X) ∼= f∗

(
K(X)

)
⊆ K(Y ). It folows that dim(X) ≤ dim(Y ) with dim(X) = dim(Y ) if

and only if K(Y ) is algebraic over f∗
(
K(X)

)
.
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7.24 Theorem: (Noether’s Normalization Lemma) Let F be a field and let R be an
integral domain of the form F[u1, · · · , un]. Let r = trans

F
F(u1, · · · , un). Then there is a

set of r points {v1, · · · , vr} ⊆ R which is algebraically independent over F such that R is
integral over F[v1, · · · , vr]

Proof: If {u1, · · · , un} is algebraically independent over F, then r = n and we can take
vi = ui and we are done. Suppose that {u1, · · · , un} is algebraically dependent over F,
so r < n. Choose a nonzero polynomial f ∈ F[x1, · · · , xn] such that f(u1, · · · , un) = 0,
say f =

∑
(i1,···,in)∈I

c
i1,···,in

x1
i1 · · ·xnin , where the coefficients in the sum are all non-zero.

Choose an integer b which is larger than every ij occurring any multi-index (i1, · · · , in) ∈ I,
then think of each ij as a digit in base b, so that the muli-indices in I determine distinct
integers

(i1, · · · , in) 7→ in + i1b+ · · · in−1bn−1 .

Now, for each j = 1, · · · , n− 1, let vj = uj − unbj so that we have uj = vj + un
bj . Notice

that F[v1, · · · , vn−1, un] = F[u1, · · · , un] = R. Also,

0 = f(u1, · · · , un) = f
(
v1 + un

b, v2 + un
b2 , · · · , vn−1 + un

bn−1

, un
)

=
∑

c
i1,···,in

(v1 + un
b)i1 · · ·

(
vn−1 + un

bn−1)in−1
(un)in .

Since the integers in + i1b+ · · ·+ in−1b
n−1 are distinct for distinct multi-indices, the above

sum has a unique term of highest order in un, say the term of multi-index (k1, · · · , kn).

Thus un is a root of the monic polynomial 1
ck1,···,kn

f
(
v1 + tb, v1 + tb

2

, · · · , v1 + tb
n−1

, t
)

∈ F[v1, · · · , vn−1][t]. This shows that un is integral over F[v1, · · · , vn−1] and hence R =
F[v1, · · · , vn−1, un] is integral over F[v1, · · · , vn−1]. If {v1, · · · , vn−1} is algebraically inde-
pendent then we have r = n− 1 and we are done. Otherwise, we can relabel each vi as ui
and repeat the above procedure on F[u1, · · · , un−1].

7.25 Example: Let R = F
[
x, 1x

]
⊆ F(x). Find v ∈ R such that R is integral over F[v].

Solution: The set
{
x, 1x

}
is algebraically dependent since

(
x, 1x

)
is a root of the polynomial

f(s, t) = st − 1 ∈ F[s, t]. As in the proof of Noether’s Normalization Lemma, using the
base b = 2, we let v = x− 1

x2 and then R = F
[
v, 1x

]
which is integral over F[v] since 1

x is
a root of the monic polynomial f(v + t2, t) = (v + t2)t− 1 = t3 + vt− 1 ∈ F[v][t].

The above element v, for which R = F
[
v, 1x

]
is integral over F[v], is not unique. For

example, v = x− 1
x also works, and 1

x is a root of the monic polynomial t2+vt−1 ∈ F[v][t].

7.26 Remark: When f : X → Y is a dominant rational map so that f∗ : A(Y )→ A(X)
is injective, the ring A(Y ) is isomorphic to its image f∗

(
A(Y )

)
. When A(X) is integral

over f∗
(
A(Y )

)
and the field F is algebraically closed, the map f : X → Y is surjective,

and when f(a) = b, the maximal ideal M ⊆ A(Y ) corresponding to the point b lies over
the maximal ideal N ⊆ A(X) corresponding to the point a.

When X = V (xy − 1) so that A(X) = F[x, y]
/
〈xy − 1〉 = F

[
x, 1x

]
, and f : X → F is

given by f(x, y) = x so that f∗ : F[t] → F
[
x, 1x

]
is given by f∗(g)(x, y) = g(x), we have

f∗
(
F[t]

)
= F[x] ⊆ F

[
x, 1x

]
. In this case the map f : X → F is not surjective and the ring

A(X) = F
[
x, 1x

]
is not integral over the image f∗

(
F[t]

)
= F[x].

When X = V (xy−1) and f : X → F is given by f(x, y) = x−y so f∗ : F[t]→ F
[
x, 1x

]
is given by f∗(g)(x, y) = g(x − y) = g

(
x − 1

x

)
, we have f∗

(
F[t]

)
= F[v] ⊆ F

[
x, 1x

]
where

v = x− 1
x (as in the previous example). In this case the map f : X → F is surjective and

the ring A(X) = F
[
x, 1x

]
is integral over the image f∗

(
F[t]

)
= F[v].
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