7. Ring Extensions and Field Extensions

7.1 Notation: Let S be a commutative extension ring of R, that is R C S, and let
U C S. The ring generated by U over R, denoted by R[U]| (or by R[uj,---,uy] in the
case that U = {uq,---,uy}), is the ring

R[U] = {f(ul,n-,un)’n EN,f€R[x1, -, 3,]}.
The R-module generated by U (or spanned by U) over R is the R-module

n
SpanRU = { > a;uiln € Nya; € R,u; € U}.
i=1
We also say that U spans the set spanRU over R. Notice that U C spanRU C R[U].
An element u € S is called integral over R if u is a root of some monic polynomial
f € R[x]. We say that S is integral over R if every element in S is integral over R.

7.2 Example: Verify that v/2 is integral over Z,  is not integral over Z, z € F[z] is
integral over F[z?], and 1 € F(z) is not integral over F[z].

7.3 Note: Let R, S and T be commutative rings with R C S C T. Notice that if
S = spanR{ul, o un}and T = spans{vl, U b then T = spanR{uivj}. Indeed, given
t € T, we can write t = ) s;v; for some s; € S, and we can write each s; as s; = ) riju;
for some 7;; € R, and then t = Zrijuwj € spanR{uivj}.

i,
7.4 Theorem: Let R and S be integral domains with R C S and let u € S. Then the
following statements are equivalent.

(1) w is integral over R.

(2) R[u] is finitely generated as an R-module.

(3) Rlu| is contained in some ring T' C S which is finitely generated as an R-module.
(4) R[u] is integral over R.

Proof: First we show that (1) = (2). Suppose that u is integral over R. Choose a monic
polynomial f € R[z| such that f(u) = 0, and say deg(f) = n. Let a € R[ul, say a = g(u)
where g € R[z]. Since f is monic, we can use the division algorithm to write g = fq +r
where ¢,r € R[z] and deg(r) < n. Since f(u) = 0 we have a = g(u) = r(u). And since
deg(r) < n, we have r(u) € span _{1,u,u?,---,u"'}. Thus R[u] = span {1, u,- - ,unT

The implication (2) = (3) is clear (simply let 7' = R[u]), so we show next that
(3) = (4). Suppose that R[u] C T = span {vi, --,v,} € S, and let w € R[u]. Then for

n
eachi=1,---,n, we have wv; € T = spanR{vl, “++,Up}, SO We can write wv; = ) a;;v;
i=1

for some a;; € R. Let A be the n x n matrix with entries a;;, and let v be the n x 1 matrix
with entries v;. Then we have (wl)v = Av so (wl — A)v = 0. Since v # 0, this implies
that det(ul — A) = 0 in the quotient field of S. Thus w is a root of the monic polynomial
f(z) = det(zI — A), which is in R[z], so w is integral over R. This shows that R[u] is
integral over R.

Finally note that (4) clearly implies (1).



7.5 Corollary: Let R, S and T be commutative rings with R C S CT. Suppose that T
is integral over S, and S is integral over R. Then T is integral over R.

Proof: Let t € T. Then t is integral over S. Say ag+ait+---4+an,_1t" ' +t" = 0 with each
a; € S. Since each a; € R|ag, -, a,_1], t is also integral over the ring R[ag, -, an_1]. By
the above theorem, there is a finite set which spans R[ag, -, an—_1,t] over Rlag, -+, an_1].
But since each ay, is integral over R and hence also over R|ag,---,a;_1], we have a chain
of ring extensions R C Rag| C --- C Rlay,--,an—1] € Rlag,- -, an_1,t] in which each
ring is spanned by a finite set over the previous ring. By the above note, this implies that
Rlag,- -, an_1,t] is spanned by a finite set over R

7.6 Definition: Let S be a commutative extension ring of R. When A is an ideal in R
and B is an ideal in S with BN R = A we say that B lies over A.

7.7 Theorem: (The Lying Over Theorem) Let R and S be integral domains with R C S
and with S integral over R.

(1) If M C R is a maximal ideal then there is a maximal ideal N C S such that NNR = M.
(2) If P C R is a prime ideal then there is a prime ideal Q) C S such that Q N R = P.

Proof: We only provide a proof of Part (1). Let & be the set of all ideals A C S such that
ANRC M. Then U is not empty since {0} € U, and every chain of ideals A; C Ay C ---
in U has an upper bound in U/, namely the ideal [J;-, A;, so by Zorn’s Lemma, U/ has a
maximal element, say N. We shall show that in fact N is a maximal ideal in S and that
NNR=M.

First, we shall show that NNR = M. Since N € U we know that NNR C M. Suppose,
for a contradiction, that N N R % M. Choose m € M\ (NNR). Then N % N +mS.

We cannot have (N 4+ mS) N R C M since otherwise N + mS would be in &/ and then N
would not be maximal in &. So we can choose r € N +mS with r» € R but r ¢ M. Since
r € N +msS, we can write r = n + ms for some n € N, s € S, and then ms = r — n.
Since S is integral over R and s € S, we have 0 = ag + a15+ - - - + ap_15* "1 + s* for some
a; € R. Multiply this by m* to get

0 = agm® 4+ aym* 1 (ms) + - + ap_1m(ms)* "1 + (ms)*

=agm® + arm T r—n) 4+ F+ ap_1m(r —n)* T+ (r—n)*.
After expanding this expression, all the terms involving n lie in IV, and hence the sum of
the remaining terms, which is u = agm® + a1m*~'r + - + ap_1mr*~t +r* must also lie
in N. But notice that we also have u € R, so u € NN R C M. All the terms involving m
lie in M, so the remaining term r* also lies in M. Since M is maximal and hence prime,
we also have r € M. This gives the desired contradiction, since r ¢ M. We leave it as a
short exercise to verify that N must be maximal.

7.8 Example: The ring Z[\/ﬁ] is integral over the ring Z, and the ideal M = (2) C Z is
maximal in Z. According to the Lying Over Theorem, we should be able to find a maximal
ideal N C Z[v/2] which lies over M. If we let A = (2) C Z[/2] then ANZ = M, but A is
not maximal in Z[v/2]. If we let N = (v/2) C Z[v/2], then N is maximal and N NZ = M.

For a similar illustration, note that the ring F|[x] is integral over F[z?]. The ideal
M = (z?) C F[z?] is maximal in F[2?], so by the Lying Over Theorem we should be able
to find a maximal ideal N C F[x] which lies over M. If we let A = (2?) C F|z], then we
have AN F[z?] = M, but A is not maximal. If we let N = (z) C F[x] then N is maximal
and N NF[z?] = M.



7.9 Definition: Let F be a subfield of K. We denote the field of rational functions
over F on the variables z1, -, z, by F(z1,---,x,). It is the quotient field of the integral

domain F[xq,---,z,]. The elements of F(x1,---,xz,) can be written in the form f = p/q
for some p,q € Flxy,- -+, z,] with ¢ # 0, and we have
T
p_T eEF(z1, ,x,) < ps—qr=0€F[xy, -, z,].
q s

For U C K, the field generated by U over F, denoted by F(U) (or by f(ui,---,uy) in
the case that U = {uy,---,uy,}) is the field

F(U) = {—f(“b'”’“”)

g(ub Ty un)

An element u € K is called algebraic over F if u is the root of some polynomial

f € F|x], otherwise u is called transcendental over F. If u is algebraic over F for every
u € K then K is algebraic over F, otherwise K is transcendental over F'.

nGN,u1,~--,un evaageF[xla"'7xn]7g<u17"'7un) #O} .

7.10 Example: C is algebraic over R, R is transcendental over Q, and for any field F,
the element x € F(x) is transcendental over F.

7.11 Theorem: Let F C K C L be fields.

(1) If w € K is algebraic over F then there is a unique monic irreducible polynomial
f € F[z], called the irreducible polynomial of u, such that f(u) =0 in K.

(2) If uw € K is algebraic over F then Flu| = F(u) = F[z|/(f), where f is the irreducible
polynomial of u, and if deg(f) = n then {1,u,---,u" 1} forms a basis for F[u] as a vector
space over F.

(3) If u € K is transcendental over F then F[u] % F(u), Flu] 2 F|z], F(u) & F(z) and the
dimension of F(u) over F is infinite.

(4) If every element of a subset U C K is algebraic over ¥ then F(U) is algebraic over F.
(5) If L is algebraic over K, and K is algebraic over F, then L is algebraic over F.

Proof: We omit the proof

7.12 Definition: Let F C K be fields. For f € F[z]|, we say that f splits in K[z] when
f factors as a product of linear polynomials in K[x]. Note that when f splits in K[z] the
roots of f all lie in K. For f € F[z], we say that K is a splitting field of f when f splits
in K[z] and K is generated over F by the roots of f. For a set of polynomials S C F[z], we
say that K is a splitting field of S when every f € S splits in K[z] and K is generated
over F by the roots of all the polynomials in S.

7.13 Theorem: Let F be a field and let S C F[z]. Then there exists a splitting field K
of S, and it is unique up to isomorphism.

Proof: We omit the proof.

7.14 Definition: Let F C K be fields. We say that K is algebraically closed when
every f € KJz] splits in K[z]. We say that K is the algebraic closure of F when K is
algebraic over F and K is algebraically closed.

7.15 Theorem: Let F be a field. Then there exists an algebraic closure K of F, it is
unique up to isomorphism, and it is the splitting field of the set F[x] of all polynomials
over F.

Proof: We omit the proof.



7.16 Definition: Let F C K be fields. A subset U C K is said to be algebraically
independent over F when for every n € Z*, for every 0 # f € F[z1,---,1,], and for
all distinct elements wuy,ug,--,u, € U, we have f(u1, - ,u,) # 0. In particular, the
empty set is algebraically independent over F. A transcendence basis for K over F is a
maximal algebraically independent set.

7.17 Note: We can see that {z1,---,z,} is a transcendence basis for F(xy,---,x,) over
F as follows. First note that {z1,---,x,} is algebraically independent over F, since for
f € Flty, -, tn)], if f(x1,--+,2,) =0 € F(x1,---,2,) then f =0 € Flty,---,t,]. Then,
note that {z1,---,z,} is a maximal algebraically independent set, since given any element

portn) @ F(gy,o,z,) we can lot f(t, - toen) = pltnc o t) — qltn, o)t

q(I1,~-,:En)

and then f # 0 € F[t1, -, tn41] but f(xl,---,xn,M) =0¢€ F(xy, --,xy), which

Q(xlv"'ﬂvn)
shows that {:101, Ce T, IH} is algebraically dependent over F.
7.18 Note: If {uy,---,u,} is algebraically independent over F then we have natural
isomorphisms Fluq, - -, u,| 2 Flzy, -, z,] and F(uy, -+, u,) 2 F(x1, -+, 2,). Indeed the
maps ¢ : Flzy, -+, z,] = Fluy, -, u,] and ¢ : F(zq,---,2,) = F(uq,---,u,) induced by
¢(x;) = u; are easily seen to give isomorphisms; the fact that {uy, -, u,} is algebraically

independent ensures that ker ¢ = {0}.

7.19 Theorem: Let F C K be fields, let U,V C K and let u € K. Then

(1) If U is algebraically independent over F then (u is transcendental over F(U) if and
only if U U {u} is algebraically independent over F).

(2) U is a transcendence basis for K over F if and only if (U is algebraically independent
over F and K is algebraic over F(U)).

(3) If K is algebraic over F(U), then U contains a transcendence basis for K over F. In
particular, a transcendence basis for K over F does exist.

(4) If U is algebraically independent over F then U can be extended to a transcendence
basis for K over F.

(5) If U and V' are both transcendence bases for K over F | then U and V have the same
cardinality.

Proof: To prove part (1), let U be algebraically independent over F. Suppose that u is
algebraic over F(U), say f(u) = 0 where 0 # f € F(U)[t]. Write f = ag + a1t + - - - + axt”
with each a; € F(U) and ax # 0, and say a; = plusstin) o oo Di,qi € Flxy,--+,x,]. Set

Q(u17'“aun)

gl@r, ) = Bt g BBy g By R o that we have
0#g€F(xy, -, 2n)[Tp1] and g(us, -, up,u) = f(u) = 0 € K. By multiplying g by a

common multiple of the denominators ¢;, we obtain a polynomial 0 # h € Fxy, -+, zy41]
such that A(uq, - -, un,u) = 0 € K, and thus we see that UU{u} is algebraically dependent.

Conversely, suppose that the set U U {u} is algebraically dependent over F, say
flug, -+ up,u) = 0 € K where 0 # f € Flzy, -+, xp41] and uq,---,u, € U. Write
f = ap+ a1xyy1 + - + apwp1 ¥ with each a; € Flzy,---,2,] and a, # 0, then let
gt) = flur, -, un,t) = ag(uy, -, up) + ay(ug, -, up)t + -+ ag(ug, -, u,)t* so that
g € FU)[t] and g(u) = 0 € K. If we had ¢ = 0 € F(U)[t] then we would have
ag(uy, - ,u,) =0 € K, but ag(uy, -,u,) # 0 since ax, # 0 € Flxy,---,2,] and U is
algebraically independent. Since g # 0 € F(U)[t] and g(u) = 0 € K, it follows that u is
algebraic over F(U).



Part (2) follows easily from part (1). To prove part (3), suppose that K is algebraic
over F(U). Let U be the collection of all subsets of U which are algebraically independent
over F. Then U # () since ) € U, and every chain U; C Uy C --- in U/ has an upper bound in
U, namely |J U;, and so by Zorn’s Lemma, U has a maximal element, say V. We claim that

i=1
V is a transcendence basis for K over F. Every u € U is algebraic over F(V') (otherwise,
by part (1), V U {u} would be algebraically independent so that V' % VU{u} € U) and

so F(U) is algebraic over F(V). This implies that K is algebraic over F(V') (since K is
algebraic over F(U) which is algebraic over F(V)). So by part (2), V is a transcendence
basis for K over F. Part (4) can be proven similarly using Zorn’s Lemma.

Finally, we prove part (5), but only in the case that at least one of the two transcen-

dence bases is finite. Let U = {uq,---,u,} be a transcendence basis for K over F, and let
V' be another tanscendence basis. We claim that there is an element vy € V such that v;
is transcendental over F(ug, -+, uy,). Suppose not. Then every v € V would be algebraic

over F(ug, -+, u,) and so F(ug, - - -, uy) (V) would be algebraic over F(ua, -, u,). Also, K
is algebraic over F(V') (by part (2), since V is a transcendence basis), and hence also over
F(uga,---,u,)(V), So we would have K algebraic over F(us,---,u,), and in particular u;
would be algebraic over F(us, -+, u,), and this is not possible since U is algebraically in-
dependent. This proves the claim, so we choose v; € V transcendental over F(ug, -, u,).

Now we claim that {v1,ug, -, u,} is another transcendence basis for K over F.
Since vy is transcendental over F(usg, - -, uy,), we know (from part 1) that {vy,ug, -, uy}
is algebraically independent. Also, u; must be algebraic over F(vy,ug, -+, uy,), (otherwise
{v1,u1,us, -+, uy} would be algebraically independent so U would not be a transcendence
basis) and so F(vq,uy,us, -+, uy,) is algebraic over F(vy,ug, -, u,). Furthermore, K is
algebraic over F(uy,ug,- -, u,) and hence over F(vq,uy,ug, -+, uy,), and so K is algebraic
over F(vy,ug, -, uy). Thus {v1,ue, -, u,} is a transcendence basis by part (2).

By repeating the above procedure, we can choose vy € V for 1 < k < n so that
{v1, -, Uk, Upt1," -, Up} is a transcendence basis for K over F. The procedure must end
when we have chosen v,,, and we must have V' = {vq, -, v,}.

7.20 Definition: Let F C K be fields. We define the transcendence degree of K over
F, written trans_K, to be the cardinality of any transcendence basis for K over F.

7.21 Definition: We define the dimension of an irreducible variety X C F” to be the
transcendence degree dim(X) = trans_ K (X).

7.22 Example: When X = {a} with a € F" we have dim(X) = 0 because 0 is a
transcendence basis for K(X) = F, and when F is infinite and X = F" we have dim(X) = n
because {x1, -, z,} is a transcendence basis for K(X) = F(z1, -, z,).

7.23 Note: When X and Y are irreducible affine varieties and f : Y — X is a dominant
polynomial or rational map, the pullback f* : K(X) — K(Y) is injective so we have
K(X) = f*(K(X)) C K(Y). It folows that dim(X) < dim(Y") with dim(X) = dim(Y") if
and only if K(Y) is algebraic over f*(K(X)).



7.24 Theorem: (Noether’s Normalization Lemma) Let F be a field and let R be an
integral domain of the form Fluy,-- -, uy]. Let r = tranSFF(ul, -+, Up). Then there is a
set of r points {vy,---,v,.} C R which is algebraically independent over F such that R is
integral over Flvy, -+, v,]

Proof: If {uy,---,u,} is algebraically independent over F, then r = n and we can take
v; = u; and we are done. Suppose that {uy,---,u,} is algebraically dependent over F,
so r < n. Choose a nonzero polynomial f € F[xy,---,z,] such that f(uy,---,u,) =0,
say f = > Ci i 21 -+ -2, , where the coefficients in the sum are all non-zero.
(7/177171)61 ’ o
Choose an integer b which is larger than every i, occurring any multi-index (i1, - -, y) € I,
then think of each 7; as a digit in base b, so that the muli-indices in I determine distinct
integers . . . . . _
& (i1, yin) > i +irb 4 iy D",

Now, for each j = 1,---,n —1, let v; = u; — unbj so that we have u; = v; + unbj. Notice
that Flvy, -+, vp_1,u,] = Fluy, -+, u,| = R. Also,

2 n—1

0= flur, up) = flo1 +u o2 +un” oot +un” L un)
. =1\ Gy .

= Eczlzn (01 + ) (vn + )T ()

Since the integers i,, +91b+- - -4 14,_1b" ! are distinct for distinct multi-indices, the above
sum has a unique term of highest order in u,, say the term of multi-index (ki,---,ky,).

Thus wu, is a root of the monic polynomial - 1 - for + 001 + o+ tb"_l,t)
o hn

€ Flvy, -+ ,vp—1][t]. This shows that w, is integral over F[vy,---,v,_1] and hence R =

Flvy, -+, vn-1,uy] is integral over Flvy, -, v,_1]. If {v1, -+, v,_1} is algebraically inde-

pendent then we have r = n — 1 and we are done. Otherwise, we can relabel each v; as u;

and repeat the above procedure on Fluq, -, up—1].

7.25 Example: Let R = F[z, 2] C F(z). Find v € R such that R is integral over F[u].

Solution: The set {:z:, %} is algebraically dependent since (:c, %) is a root of the polynomial

f(s,t) = st — 1 € Fls,t]. As in the proof of Noether’s Normalization Lemma, using the
base b = 2, we let v = # — 25 and then R = F[v, 2| which is integral over F[v] since 1 is
a root of the monic polynomial f(v+t%,t) = (v +t2)t — 1 =13+ vt — 1 € F|[t].

The above element v, for which R = F[U, %] is integral over F[v], is not unique. For
example, v = 2 — < also works, and < is a root of the monic polynomial t*+vt—1 € F[v][¢].

7.26 Remark: When f: X — Y is a dominant rational map so that f*: A(Y) — A(X)
is injective, the ring A(Y) is isomorphic to its image f*(A(Y)). When A(X) is integral
over f* (A(Y)) and the field F is algebraically closed, the map f : X — Y is surjective,
and when f(a) = b, the maximal ideal M C A(Y) corresponding to the point b lies over
the maximal ideal N C A(X) corresponding to the point a.

When X = V(zy — 1) so that A(X) = Flz,y]/(zy — 1) =F[z,1], and f: X — F is
given by f(z,y) = x so that f* : F[t] — F[z, 1] is given by f*(g)(z,y) = g(x), we have
f*(F[t]) = Flz] C F[z, 1]. In this case the map f : X — F is not surjective and the ring
A(X) = F[z, 1] is not integral over the image f*(F[t]) = Fl[z].

When X = V(zy—1)and f: X — Fisgiven by f(z,y) =z—yso f*: Flt] —» F[z, ﬂ
is given by f*(9)(z,y) = g(z —y) = g(z — 1), we have f*(F[t]) = F[v] C F|[z, 1] where
v=1x — % (as in the previous example). In this case the map f : X — F is surjective and
the ring A(X) = F [z, 1] is integral over the image f*(F[t]) = F[v].
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